Generalizations of Hopfian and co-Hopfian modules

Let R be a ring and M a left R-module. M which satisfies DCC on essential submodules is GCH, and M which satisfies ACC on small submodules is WH. If M[X] is GCH R[X]-module, then M is GCH R-module. Examples show that a GCH module need not be co-Hopfian and a WH module need not be Hopfian.

Bibliographic Details
Main Author: Yongduo Wang
Format: Article
Language:English
Published: Hindawi Limited 2005-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS.2005.1455
id doaj-f999f972a3514988a62b8981b1305691
record_format Article
spelling doaj-f999f972a3514988a62b8981b13056912020-11-24T22:08:03ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252005-01-01200591455146010.1155/IJMMS.2005.1455Generalizations of Hopfian and co-Hopfian modulesYongduo Wang0Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou 730050, ChinaLet R be a ring and M a left R-module. M which satisfies DCC on essential submodules is GCH, and M which satisfies ACC on small submodules is WH. If M[X] is GCH R[X]-module, then M is GCH R-module. Examples show that a GCH module need not be co-Hopfian and a WH module need not be Hopfian.http://dx.doi.org/10.1155/IJMMS.2005.1455
collection DOAJ
language English
format Article
sources DOAJ
author Yongduo Wang
spellingShingle Yongduo Wang
Generalizations of Hopfian and co-Hopfian modules
International Journal of Mathematics and Mathematical Sciences
author_facet Yongduo Wang
author_sort Yongduo Wang
title Generalizations of Hopfian and co-Hopfian modules
title_short Generalizations of Hopfian and co-Hopfian modules
title_full Generalizations of Hopfian and co-Hopfian modules
title_fullStr Generalizations of Hopfian and co-Hopfian modules
title_full_unstemmed Generalizations of Hopfian and co-Hopfian modules
title_sort generalizations of hopfian and co-hopfian modules
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 2005-01-01
description Let R be a ring and M a left R-module. M which satisfies DCC on essential submodules is GCH, and M which satisfies ACC on small submodules is WH. If M[X] is GCH R[X]-module, then M is GCH R-module. Examples show that a GCH module need not be co-Hopfian and a WH module need not be Hopfian.
url http://dx.doi.org/10.1155/IJMMS.2005.1455
work_keys_str_mv AT yongduowang generalizationsofhopfianandcohopfianmodules
_version_ 1725817901553811456