Generalizations of Hopfian and co-Hopfian modules
Let R be a ring and M a left R-module. M which satisfies DCC on essential submodules is GCH, and M which satisfies ACC on small submodules is WH. If M[X] is GCH R[X]-module, then M is GCH R-module. Examples show that a GCH module need not be co-Hopfian and a WH module need not be Hopfian.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2005-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/IJMMS.2005.1455 |
Summary: | Let R be a ring and M a left R-module. M which satisfies
DCC on essential submodules is GCH, and M which satisfies ACC on
small submodules is WH. If M[X] is GCH R[X]-module, then M is GCH R-module. Examples show that a GCH module need not be
co-Hopfian and a WH module need not be Hopfian. |
---|---|
ISSN: | 0161-1712 1687-0425 |