Fluorescent RNA cytosine analogue – an internal probe for detailed structure and dynamics investigations
Abstract The bright fluorescent cytosine analogue tCO stands out among fluorescent bases due to its virtually unquenched fluorescence emission in duplex DNA. However, like most reported base analogues, it has not been thoroughly characterized in RNA. We here report on the first synthesis and RNA-inc...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-05-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-017-02453-1 |
id |
doaj-f9924c7b2eb845ad804425dc82e6bff6 |
---|---|
record_format |
Article |
spelling |
doaj-f9924c7b2eb845ad804425dc82e6bff62020-12-08T01:49:40ZengNature Publishing GroupScientific Reports2045-23222017-05-01711810.1038/s41598-017-02453-1Fluorescent RNA cytosine analogue – an internal probe for detailed structure and dynamics investigationsAnders Foller Füchtbauer0Søren Preus1Karl Börjesson2Scott A. McPhee3David M. J. Lilley4L. Marcus Wilhelmsson5Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of TechnologyDepartment of Chemistry, University of CopenhagenDepartment of Chemistry and Molecular Biology, University of GothenburgCancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of DundeeCancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of DundeeChemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of TechnologyAbstract The bright fluorescent cytosine analogue tCO stands out among fluorescent bases due to its virtually unquenched fluorescence emission in duplex DNA. However, like most reported base analogues, it has not been thoroughly characterized in RNA. We here report on the first synthesis and RNA-incorporation of tCO, and characterize its base-mimicking and fluorescence properties in RNA. As in DNA, we find a high quantum yield inside RNA duplexes (<ΦF> = 0.22) that is virtually unaffected by the neighbouring bases (ΦF = 0.20–0.25), resulting in an average brightness of 1900 M−1 cm−1. The average fluorescence lifetime in RNA duplexes is 4.3 ns and generally two lifetimes are required to fit the exponential decays. Fluorescence properties in ssRNA are defined by a small increase in average quantum yield (<ΦF > = 0.24) compared to dsRNA, with a broader distribution (ΦF = 0.17–0.34) and slightly shorter average lifetimes. Using circular dichroism, we find that the tCO-modified RNA duplexes form regular A-form helices and in UV-melting experiments the stability of the duplexes is only slightly higher than that of the corresponding natural RNA (<ΔT m> = + 2.3 °C). These properties make tCO a highly interesting fluorescent RNA base analogue for detailed FRET-based structural measurements, as a bright internal label in microscopy, and for fluorescence anisotropy measurements of RNA dynamics.https://doi.org/10.1038/s41598-017-02453-1 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Anders Foller Füchtbauer Søren Preus Karl Börjesson Scott A. McPhee David M. J. Lilley L. Marcus Wilhelmsson |
spellingShingle |
Anders Foller Füchtbauer Søren Preus Karl Börjesson Scott A. McPhee David M. J. Lilley L. Marcus Wilhelmsson Fluorescent RNA cytosine analogue – an internal probe for detailed structure and dynamics investigations Scientific Reports |
author_facet |
Anders Foller Füchtbauer Søren Preus Karl Börjesson Scott A. McPhee David M. J. Lilley L. Marcus Wilhelmsson |
author_sort |
Anders Foller Füchtbauer |
title |
Fluorescent RNA cytosine analogue – an internal probe for detailed structure and dynamics investigations |
title_short |
Fluorescent RNA cytosine analogue – an internal probe for detailed structure and dynamics investigations |
title_full |
Fluorescent RNA cytosine analogue – an internal probe for detailed structure and dynamics investigations |
title_fullStr |
Fluorescent RNA cytosine analogue – an internal probe for detailed structure and dynamics investigations |
title_full_unstemmed |
Fluorescent RNA cytosine analogue – an internal probe for detailed structure and dynamics investigations |
title_sort |
fluorescent rna cytosine analogue – an internal probe for detailed structure and dynamics investigations |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2017-05-01 |
description |
Abstract The bright fluorescent cytosine analogue tCO stands out among fluorescent bases due to its virtually unquenched fluorescence emission in duplex DNA. However, like most reported base analogues, it has not been thoroughly characterized in RNA. We here report on the first synthesis and RNA-incorporation of tCO, and characterize its base-mimicking and fluorescence properties in RNA. As in DNA, we find a high quantum yield inside RNA duplexes (<ΦF> = 0.22) that is virtually unaffected by the neighbouring bases (ΦF = 0.20–0.25), resulting in an average brightness of 1900 M−1 cm−1. The average fluorescence lifetime in RNA duplexes is 4.3 ns and generally two lifetimes are required to fit the exponential decays. Fluorescence properties in ssRNA are defined by a small increase in average quantum yield (<ΦF > = 0.24) compared to dsRNA, with a broader distribution (ΦF = 0.17–0.34) and slightly shorter average lifetimes. Using circular dichroism, we find that the tCO-modified RNA duplexes form regular A-form helices and in UV-melting experiments the stability of the duplexes is only slightly higher than that of the corresponding natural RNA (<ΔT m> = + 2.3 °C). These properties make tCO a highly interesting fluorescent RNA base analogue for detailed FRET-based structural measurements, as a bright internal label in microscopy, and for fluorescence anisotropy measurements of RNA dynamics. |
url |
https://doi.org/10.1038/s41598-017-02453-1 |
work_keys_str_mv |
AT andersfollerfuchtbauer fluorescentrnacytosineanalogueaninternalprobefordetailedstructureanddynamicsinvestigations AT sørenpreus fluorescentrnacytosineanalogueaninternalprobefordetailedstructureanddynamicsinvestigations AT karlborjesson fluorescentrnacytosineanalogueaninternalprobefordetailedstructureanddynamicsinvestigations AT scottamcphee fluorescentrnacytosineanalogueaninternalprobefordetailedstructureanddynamicsinvestigations AT davidmjlilley fluorescentrnacytosineanalogueaninternalprobefordetailedstructureanddynamicsinvestigations AT lmarcuswilhelmsson fluorescentrnacytosineanalogueaninternalprobefordetailedstructureanddynamicsinvestigations |
_version_ |
1724394496790102016 |