Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions

In this study, we investigate the estimation and inference on a low-dimensional causal parameter in the presence of high-dimensional controls in an instrumental variable quantile regression. Our proposed econometric procedure builds on the Neyman-type orthogonal moment conditions of a previous study...

Full description

Bibliographic Details
Main Authors: Jau-er Chen, Chien-Hsun Huang, Jia-Jyun Tien
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Econometrics
Subjects:
Online Access:https://www.mdpi.com/2225-1146/9/2/15
id doaj-f987fe16bf564c1d9668b32187b3f36c
record_format Article
spelling doaj-f987fe16bf564c1d9668b32187b3f36c2021-04-02T23:06:24ZengMDPI AGEconometrics2225-11462021-04-019151510.3390/econometrics9020015Debiased/Double Machine Learning for Instrumental Variable Quantile RegressionsJau-er Chen0Chien-Hsun Huang1Jia-Jyun Tien2Institute for International Strategy, Tokyo International University, 1-13-1 Matobakita Kawagoe, Saitama 350-1197, JapanThe Office of the Chief Economist, Microsoft Research, Redmond, Washington, DC 98052, USADepartment of Economics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, TaiwanIn this study, we investigate the estimation and inference on a low-dimensional causal parameter in the presence of high-dimensional controls in an instrumental variable quantile regression. Our proposed econometric procedure builds on the Neyman-type orthogonal moment conditions of a previous study (Chernozhukov et al. 2018) and is thus relatively insensitive to the estimation of the nuisance parameters. The Monte Carlo experiments show that the estimator copes well with high-dimensional controls. We also apply the procedure to empirically reinvestigate the quantile treatment effect of 401(k) participation on accumulated wealth.https://www.mdpi.com/2225-1146/9/2/15quantile treatment effectinstrumental variablequantile regressiondouble machine learninglasso
collection DOAJ
language English
format Article
sources DOAJ
author Jau-er Chen
Chien-Hsun Huang
Jia-Jyun Tien
spellingShingle Jau-er Chen
Chien-Hsun Huang
Jia-Jyun Tien
Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions
Econometrics
quantile treatment effect
instrumental variable
quantile regression
double machine learning
lasso
author_facet Jau-er Chen
Chien-Hsun Huang
Jia-Jyun Tien
author_sort Jau-er Chen
title Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions
title_short Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions
title_full Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions
title_fullStr Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions
title_full_unstemmed Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions
title_sort debiased/double machine learning for instrumental variable quantile regressions
publisher MDPI AG
series Econometrics
issn 2225-1146
publishDate 2021-04-01
description In this study, we investigate the estimation and inference on a low-dimensional causal parameter in the presence of high-dimensional controls in an instrumental variable quantile regression. Our proposed econometric procedure builds on the Neyman-type orthogonal moment conditions of a previous study (Chernozhukov et al. 2018) and is thus relatively insensitive to the estimation of the nuisance parameters. The Monte Carlo experiments show that the estimator copes well with high-dimensional controls. We also apply the procedure to empirically reinvestigate the quantile treatment effect of 401(k) participation on accumulated wealth.
topic quantile treatment effect
instrumental variable
quantile regression
double machine learning
lasso
url https://www.mdpi.com/2225-1146/9/2/15
work_keys_str_mv AT jauerchen debiaseddoublemachinelearningforinstrumentalvariablequantileregressions
AT chienhsunhuang debiaseddoublemachinelearningforinstrumentalvariablequantileregressions
AT jiajyuntien debiaseddoublemachinelearningforinstrumentalvariablequantileregressions
_version_ 1721544572153102336