Parameter estimation methods for random point fields with local interactions

The paper gives an overview of methods for estimating the parameters of random point fields with local interaction between points. It is shown that the conventional method of the maximum pseudo-likelihood is a special case of the family of estimation methods based on the use of the auxiliary Markov...

Full description

Bibliographic Details
Main Author: P. Ya. Grabarnik
Format: Article
Language:Russian
Published: Institute of Computer Science 2016-04-01
Series:Компьютерные исследования и моделирование
Subjects:
Online Access:http://crm.ics.org.ru/uploads/crmissues/crm_2016_2/16.08.10.pdf
id doaj-f9721c605cae41f0bb6058890e87d33b
record_format Article
spelling doaj-f9721c605cae41f0bb6058890e87d33b2020-11-24T20:43:52ZrusInstitute of Computer ScienceКомпьютерные исследования и моделирование2076-76332077-68532016-04-018232333210.20537/2076-7633-2016-8-2-323-3322440Parameter estimation methods for random point fields with local interactionsP. Ya. GrabarnikThe paper gives an overview of methods for estimating the parameters of random point fields with local interaction between points. It is shown that the conventional method of the maximum pseudo-likelihood is a special case of the family of estimation methods based on the use of the auxiliary Markov process, invariant measure of which is the Gibbs point field with parameters to be estimated. A generalization of this method, resulting in estimating equation that can not be obtained by the the universal Takacs-Fiksel method, is proposed. It is shown by computer simulations that the new method enables to obtain estimates which have better quality than those by a widely used method of the maximum pseudolikelihood.http://crm.ics.org.ru/uploads/crmissues/crm_2016_2/16.08.10.pdfGibbs point processestimating functionpseudo-likelihoodparametric inference
collection DOAJ
language Russian
format Article
sources DOAJ
author P. Ya. Grabarnik
spellingShingle P. Ya. Grabarnik
Parameter estimation methods for random point fields with local interactions
Компьютерные исследования и моделирование
Gibbs point process
estimating function
pseudo-likelihood
parametric inference
author_facet P. Ya. Grabarnik
author_sort P. Ya. Grabarnik
title Parameter estimation methods for random point fields with local interactions
title_short Parameter estimation methods for random point fields with local interactions
title_full Parameter estimation methods for random point fields with local interactions
title_fullStr Parameter estimation methods for random point fields with local interactions
title_full_unstemmed Parameter estimation methods for random point fields with local interactions
title_sort parameter estimation methods for random point fields with local interactions
publisher Institute of Computer Science
series Компьютерные исследования и моделирование
issn 2076-7633
2077-6853
publishDate 2016-04-01
description The paper gives an overview of methods for estimating the parameters of random point fields with local interaction between points. It is shown that the conventional method of the maximum pseudo-likelihood is a special case of the family of estimation methods based on the use of the auxiliary Markov process, invariant measure of which is the Gibbs point field with parameters to be estimated. A generalization of this method, resulting in estimating equation that can not be obtained by the the universal Takacs-Fiksel method, is proposed. It is shown by computer simulations that the new method enables to obtain estimates which have better quality than those by a widely used method of the maximum pseudolikelihood.
topic Gibbs point process
estimating function
pseudo-likelihood
parametric inference
url http://crm.ics.org.ru/uploads/crmissues/crm_2016_2/16.08.10.pdf
work_keys_str_mv AT pyagrabarnik parameterestimationmethodsforrandompointfieldswithlocalinteractions
_version_ 1716818722074656768