A review of influenza detection and prediction through social networking sites
Abstract Early prediction of seasonal epidemics such as influenza may reduce their impact in daily lives. Nowadays, the web can be used for surveillance of diseases. Search engines and social networking sites can be used to track trends of different diseases seven to ten days faster than government...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2018-02-01
|
Series: | Theoretical Biology and Medical Modelling |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12976-017-0074-5 |
id |
doaj-f9710c2fd9834aef9a2f207c01e44105 |
---|---|
record_format |
Article |
spelling |
doaj-f9710c2fd9834aef9a2f207c01e441052020-11-24T22:11:30ZengBMCTheoretical Biology and Medical Modelling1742-46822018-02-0115112710.1186/s12976-017-0074-5A review of influenza detection and prediction through social networking sitesAli Alessa0Miad Faezipour1Department of Computer Science and Engineering, School of Engineering, University of BridgeportDepartment of Computer Science and Engineering, School of Engineering, University of BridgeportAbstract Early prediction of seasonal epidemics such as influenza may reduce their impact in daily lives. Nowadays, the web can be used for surveillance of diseases. Search engines and social networking sites can be used to track trends of different diseases seven to ten days faster than government agencies such as Center of Disease Control and Prevention (CDC). CDC uses the Illness-Like Influenza Surveillance Network (ILINet), which is a program used to monitor Influenza-Like Illness (ILI) sent by thousands of health care providers in order to detect influenza outbreaks. It is a reliable tool, however, it is slow and expensive. For that reason, many studies aim to develop methods that do real time analysis to track ILI using social networking sites. Social media data such as Twitter can be used to predict the spread of flu in the population and can help in getting early warnings. Today, social networking sites (SNS) are used widely by many people to share thoughts and even health status. Therefore, SNS provides an efficient resource for disease surveillance and a good way to communicate to prevent disease outbreaks. The goal of this study is to review existing alternative solutions that track flu outbreak in real time using social networking sites and web blogs. Many studies have shown that social networking sites can be used to conduct real time analysis for better predictions.http://link.springer.com/article/10.1186/s12976-017-0074-5Flu trendSocial media dataIllness Like Influenza (ILI) |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ali Alessa Miad Faezipour |
spellingShingle |
Ali Alessa Miad Faezipour A review of influenza detection and prediction through social networking sites Theoretical Biology and Medical Modelling Flu trend Social media data Illness Like Influenza (ILI) |
author_facet |
Ali Alessa Miad Faezipour |
author_sort |
Ali Alessa |
title |
A review of influenza detection and prediction through social networking sites |
title_short |
A review of influenza detection and prediction through social networking sites |
title_full |
A review of influenza detection and prediction through social networking sites |
title_fullStr |
A review of influenza detection and prediction through social networking sites |
title_full_unstemmed |
A review of influenza detection and prediction through social networking sites |
title_sort |
review of influenza detection and prediction through social networking sites |
publisher |
BMC |
series |
Theoretical Biology and Medical Modelling |
issn |
1742-4682 |
publishDate |
2018-02-01 |
description |
Abstract Early prediction of seasonal epidemics such as influenza may reduce their impact in daily lives. Nowadays, the web can be used for surveillance of diseases. Search engines and social networking sites can be used to track trends of different diseases seven to ten days faster than government agencies such as Center of Disease Control and Prevention (CDC). CDC uses the Illness-Like Influenza Surveillance Network (ILINet), which is a program used to monitor Influenza-Like Illness (ILI) sent by thousands of health care providers in order to detect influenza outbreaks. It is a reliable tool, however, it is slow and expensive. For that reason, many studies aim to develop methods that do real time analysis to track ILI using social networking sites. Social media data such as Twitter can be used to predict the spread of flu in the population and can help in getting early warnings. Today, social networking sites (SNS) are used widely by many people to share thoughts and even health status. Therefore, SNS provides an efficient resource for disease surveillance and a good way to communicate to prevent disease outbreaks. The goal of this study is to review existing alternative solutions that track flu outbreak in real time using social networking sites and web blogs. Many studies have shown that social networking sites can be used to conduct real time analysis for better predictions. |
topic |
Flu trend Social media data Illness Like Influenza (ILI) |
url |
http://link.springer.com/article/10.1186/s12976-017-0074-5 |
work_keys_str_mv |
AT alialessa areviewofinfluenzadetectionandpredictionthroughsocialnetworkingsites AT miadfaezipour areviewofinfluenzadetectionandpredictionthroughsocialnetworkingsites AT alialessa reviewofinfluenzadetectionandpredictionthroughsocialnetworkingsites AT miadfaezipour reviewofinfluenzadetectionandpredictionthroughsocialnetworkingsites |
_version_ |
1725805336718213120 |