Diel variation in the vertical distribution of fish larvae forced by upwelling filaments off Punta Angamos (northern Chile)

The role of daily vertical migration (DVM) of ichthyoplanktonic associations off Punta Angamos, in northern Chile, was examined. In September 1998 and January 1999, two oceanographic surveys were conducted during coastal upwelling events. Fish larvae were collected during the day/night in three dept...

Full description

Bibliographic Details
Main Author: Pablo M Rojas
Format: Article
Language:English
Published: Escuela de Ciencias del Mar, Facultad de Recursos Naturales, Pontificia Universidad Católica de Valparaíso 2014-07-01
Series:Latin American Journal of Aquatic Research
Subjects:
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-560X2014000300002&lng=en&tlng=en
Description
Summary:The role of daily vertical migration (DVM) of ichthyoplanktonic associations off Punta Angamos, in northern Chile, was examined. In September 1998 and January 1999, two oceanographic surveys were conducted during coastal upwelling events. Fish larvae were collected during the day/night in three depth strata (0-20, 20-80 and 80-200 m) and inside/outside of upwelling filaments. The study area was dominated by a southward flow along 200 m depth; meanwhile, the Ekman layer did not exceed 20 m depth. The greatest accumulation of larvae was found in the middle layer (20-80 m), where the current velocity was low and did not interact with the circulation associated with upwelling the filament formation. Most fish larvae were found in non-upwelling waters in the middle stratum. Independent of the origin of water (upwelling/non-upwelling), larvae of Dioge-nichthys laternatus (Myctophidae), Engraulis ringens (Engraulidae) and Bathylagus nigrigenys (Bathylagidae) showed a deeper vertical distribution during the day, suggesting a daily vertical migration. This behavior can potentially increase retention of larvae near the coast in productive areas through vertical evasion of the Ekman layer during upwelling events.
ISSN:0718-560X