Numerical Simulation of Galvanic Corrosion between Carbon Steel and Low Alloy Steel in a Bolted Joint
The galvanic corrosion of a bolt joint combining carbon steel end plate and low alloy steel bolt was investigated electrochemically in a 1 M HCl solution. The corrosion parameters of the joint components were used for numerical simulation using Comsol Multiphysics software to analyze the galvanic co...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | International Journal of Corrosion |
Online Access: | http://dx.doi.org/10.1155/2017/6174904 |
id |
doaj-f95f57b4bd464bf8b20bcd7d72331eca |
---|---|
record_format |
Article |
spelling |
doaj-f95f57b4bd464bf8b20bcd7d72331eca2020-11-24T21:40:16ZengHindawi LimitedInternational Journal of Corrosion1687-93251687-93332017-01-01201710.1155/2017/61749046174904Numerical Simulation of Galvanic Corrosion between Carbon Steel and Low Alloy Steel in a Bolted JointRachid Radouani0Younes Echcharqy1Mohamed Essahli2Laboratory of Applied Chemistry and Environment, Faculty of Science and Technology, University of Hassan 1, Settat, MoroccoLaboratory of Applied Chemistry and Environment, Faculty of Science and Technology, University of Hassan 1, Settat, MoroccoLaboratory of Applied Chemistry and Environment, Faculty of Science and Technology, University of Hassan 1, Settat, MoroccoThe galvanic corrosion of a bolt joint combining carbon steel end plate and low alloy steel bolt was investigated electrochemically in a 1 M HCl solution. The corrosion parameters of the joint components were used for numerical simulation using Comsol Multiphysics software to analyze the galvanic corrosion behavior at the contact zone between the head bolt and the end plate. In this research work we evaluate the variation of the corrosion rate in the steel end plate considered as the anode, in order to determine the lifetime of the bolted assembly used in steel structures. Three materials (20MnCr5, 42CrMo4, and 32CrMoV13) and three bolts (M12, M16, and M20) were tested in two thicknesses of electrolyte 1 M HCl (e = 1 mm, e = 20 mm). It is found that the corrosion rate of the anode part (end plate) is higher for 32CrMoV13 materials and it increases if both diameter of the bolt and thickness of the electrolyte increase (Cr(M20) > Cr(M16) > Cr(M12) and Cr(e = 20 mm) > Cr(e = 1 mm)). This corrosion rate is higher in the contact area between the bolt head and the end plate, and it decreases if we move away from this contact area.http://dx.doi.org/10.1155/2017/6174904 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rachid Radouani Younes Echcharqy Mohamed Essahli |
spellingShingle |
Rachid Radouani Younes Echcharqy Mohamed Essahli Numerical Simulation of Galvanic Corrosion between Carbon Steel and Low Alloy Steel in a Bolted Joint International Journal of Corrosion |
author_facet |
Rachid Radouani Younes Echcharqy Mohamed Essahli |
author_sort |
Rachid Radouani |
title |
Numerical Simulation of Galvanic Corrosion between Carbon Steel and Low Alloy Steel in a Bolted Joint |
title_short |
Numerical Simulation of Galvanic Corrosion between Carbon Steel and Low Alloy Steel in a Bolted Joint |
title_full |
Numerical Simulation of Galvanic Corrosion between Carbon Steel and Low Alloy Steel in a Bolted Joint |
title_fullStr |
Numerical Simulation of Galvanic Corrosion between Carbon Steel and Low Alloy Steel in a Bolted Joint |
title_full_unstemmed |
Numerical Simulation of Galvanic Corrosion between Carbon Steel and Low Alloy Steel in a Bolted Joint |
title_sort |
numerical simulation of galvanic corrosion between carbon steel and low alloy steel in a bolted joint |
publisher |
Hindawi Limited |
series |
International Journal of Corrosion |
issn |
1687-9325 1687-9333 |
publishDate |
2017-01-01 |
description |
The galvanic corrosion of a bolt joint combining carbon steel end plate and low alloy steel bolt was investigated electrochemically in a 1 M HCl solution. The corrosion parameters of the joint components were used for numerical simulation using Comsol Multiphysics software to analyze the galvanic corrosion behavior at the contact zone between the head bolt and the end plate. In this research work we evaluate the variation of the corrosion rate in the steel end plate considered as the anode, in order to determine the lifetime of the bolted assembly used in steel structures. Three materials (20MnCr5, 42CrMo4, and 32CrMoV13) and three bolts (M12, M16, and M20) were tested in two thicknesses of electrolyte 1 M HCl (e = 1 mm, e = 20 mm). It is found that the corrosion rate of the anode part (end plate) is higher for 32CrMoV13 materials and it increases if both diameter of the bolt and thickness of the electrolyte increase (Cr(M20) > Cr(M16) > Cr(M12) and Cr(e = 20 mm) > Cr(e = 1 mm)). This corrosion rate is higher in the contact area between the bolt head and the end plate, and it decreases if we move away from this contact area. |
url |
http://dx.doi.org/10.1155/2017/6174904 |
work_keys_str_mv |
AT rachidradouani numericalsimulationofgalvaniccorrosionbetweencarbonsteelandlowalloysteelinaboltedjoint AT younesechcharqy numericalsimulationofgalvaniccorrosionbetweencarbonsteelandlowalloysteelinaboltedjoint AT mohamedessahli numericalsimulationofgalvaniccorrosionbetweencarbonsteelandlowalloysteelinaboltedjoint |
_version_ |
1725927039897174016 |