Effect of ECAP and Heat-treatment on Pitting Corrosion Behavior of Industrial Pure Iron
In order to guide a reasonable application of the bulk ultrafine-grained industrial pure iron, a serious of ultrafine-grained pure iron samples with different microstructures were fabricated by multi-passes ECAP and heat-treatment, and their microstructures and pitting corrosion behaviour were inves...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Journal of Materials Engineering
2016-11-01
|
Series: | Journal of Materials Engineering |
Subjects: | |
Online Access: | http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.11.011 |
Summary: | In order to guide a reasonable application of the bulk ultrafine-grained industrial pure iron, a serious of ultrafine-grained pure iron samples with different microstructures were fabricated by multi-passes ECAP and heat-treatment, and their microstructures and pitting corrosion behaviour were investigated by transmission electron microscopy (TEM), electrochemical polarization and impedance spectroscopy (EIS) techniques, respectively. Results show that:with the increase of ECAP passes, lath-shaped structure with high dislocation density transforms into equiaxed grains with low dislocation density; the dislocation density decreases and the high-angle grain boundaries increase, after the annealing treatment. ECAP passes have less effect on the self-passivation of pure iron, and its open circuit potential (OCP) and polarization resistance are less changed; the pitting corrosion resistance of the ECAPed pure iron is related to the ECAP passes:the pitting potential first decreases and then increases with the increase of ECAP passes; the self-passivation property and pitting corrosion resistance of the ECAPed pure iron are improved after the annealing heat-treatment, the OCP, polarization resistance and pitting potential values increase obviously. |
---|---|
ISSN: | 1001-4381 1001-4381 |