Mesoporous Carbon Production by Nanocasting Technique Using Boehmite as a Template

A series of mesoporous carbonaceous materials were synthesized by the nanocasting technique using boehmite as a template and glucose as a carbon precursor. After pyrolysis and template removal, the resulting material is a mesoporous carbon that can be additionally doped with N, B and K during prepyr...

Full description

Bibliographic Details
Main Authors: María Ortega-Franqueza, Svetlana Ivanova, María Isabel Domínguez, Miguel Ángel Centeno
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/11/9/1132
Description
Summary:A series of mesoporous carbonaceous materials were synthesized by the nanocasting technique using boehmite as a template and glucose as a carbon precursor. After pyrolysis and template removal, the resulting material is a mesoporous carbon that can be additionally doped with N, B and K during prepyrolysis impregnation. In addition, the influence of doping on the morphology, crystallinity and stability of the synthesized carbons was studied using X-ray diffraction, nitrogen physisorption, thermogravimetry, Raman and IR spectroscopy and transmission electron microscopy. While the nanocasting process is effective for the formation of mesopores, KOH and urea do not modify the textural properties of carbon. The use of H<sub>3</sub>PO<sub>4</sub> as a dopant, however, led to the formation of an AlPO<sub>4</sub> compound and resulted in a solid with a lower specific surface area and higher microporosity. All doped solids present higher thermal stability as a positive effect of the introduction of heteroatoms to the carbon skeleton. The phosphorus-doped sample has better oxidation resistance, with a combustion temperature 120–150 °C higher than those observed for the other materials.
ISSN:2073-4344