Summary: | Snow depth distribution in the Qinghai-Tibetan plateau is important for atmospheric circulation and surface water resources. <i>In-situ</i> observations at meteorological stations and remote observation by passive microwave remote sensing technique are two main approaches for monitoring snow depth at regional or global levels. However, the meteorological stations are often scarce and unevenly distributed in mountainous regions because of inaccessibility, so are the <i>in-situ</i> snow depth measurements. Passive microwave remote sensing data can alleviate the unevenness issue, but accuracy and spatial (e.g., 25 km) and temporal resolutions are low; spatial heterogeneity in snow depth is thus hard to capture. On the other hand, optical sensors such as moderate resolution imaging spectroradiometer (MODIS) onboard Terra and Aqua satellites can monitor snow at moderate spatial resolution (1 km) and high temporal resolution (daily) but only snow area extent, not snow depth. Fusing passive microwave snow depth data with optical snow area extent data provides an unprecedented opportunity for generating snow depth data at moderate spatial resolution and high temporal resolution. In this article, a linear multivariate snow depth reconstruction (LMSDR) model was developed by fusing multisource snow depth data, optical snow area extent data, and environmental factors (e.g., spatial distribution, terrain features, and snow cover characteristics), to reconstruct daily snow depth data at moderate resolution (1 km) for 16 consecutive hydrological years, taking Qinghai-Tibetan Plateau (QTP) as a case study. We found that snow cover day (SCD) and environmental factors such as longitude, latitude, slope, surface roughness, and surface fluctuation have a significant impact on the variations of snow depth over the QTP. Relatively high accuracy (root mean square error (RMSE) = 2.26 cm) was observed in the reconstructed snow depth when compared with <i>in-situ</i> data. Compared with the passive microwave remote sensing snow depth product, constructing a nonlinear snow depletion curve product with an empirical formula and fusion snow depth product, the LMSDR model (RMSE = 2.28 cm, R<sup>2 </sup>= 0.63) demonstrated a significant improvement in accuracy of snow depth reconstruction. The overall spatial accuracy of the reconstructed snow depth was 92%. Compared with <i>in-situ</i> observations, the LMSDR product performed well regarding different snow depth intervals, land use, elevation intervals, slope intervals, and SCD and performed best, especially when the snow depth was less than 3 cm. At the same time, a long-time snow depth series reconstructed based on the LMSDR model reflected interannual variations of snow depth well over the QTP.
|