Error properties of Argos satellite telemetry locations using least squares and Kalman filtering.

Study of animal movements is key for understanding their ecology and facilitating their conservation. The Argos satellite system is a valuable tool for tracking species which move long distances, inhabit remote areas, and are otherwise difficult to track with traditional VHF telemetry and are not su...

Full description

Bibliographic Details
Main Authors: Janice D Boyd, Donald J Brightsmith
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3656847?pdf=render
Description
Summary:Study of animal movements is key for understanding their ecology and facilitating their conservation. The Argos satellite system is a valuable tool for tracking species which move long distances, inhabit remote areas, and are otherwise difficult to track with traditional VHF telemetry and are not suitable for GPS systems. Previous research has raised doubts about the magnitude of position errors quoted by the satellite service provider CLS. In addition, no peer-reviewed publications have evaluated the usefulness of the CLS supplied error ellipses nor the accuracy of the new Kalman filtering (KF) processing method. Using transmitters hung from towers and trees in southeastern Peru, we show the Argos error ellipses generally contain <25% of the true locations and therefore do not adequately describe the true location errors. We also find that KF processing does not significantly increase location accuracy. The errors for both LS and KF processing methods were found to be lognormally distributed, which has important repercussions for error calculation, statistical analysis, and data interpretation. In brief, "good" positions (location codes 3, 2, 1, A) are accurate to about 2 km, while 0 and B locations are accurate to about 5-10 km. However, due to the lognormal distribution of the errors, larger outliers are to be expected in all location codes and need to be accounted for in the user's data processing. We evaluate five different empirical error estimates and find that 68% lognormal error ellipses provided the most useful error estimates. Longitude errors are larger than latitude errors by a factor of 2 to 3, supporting the use of elliptical error ellipses. Numerous studies over the past 15 years have also found fault with the CLS-claimed error estimates yet CLS has failed to correct their misleading information. We hope this will be reversed in the near future.
ISSN:1932-6203