On the recursive sequence
<p/> <p>Our aim in this paper is to investigate the boundedness, global asymptotic stability, and periodic character of solutions of the difference equation <it>x</it><sub><it>n</it>+1</sub> = (<it>γx</it><sub><it>n<...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2005-01-01
|
Series: | Advances in Difference Equations |
Online Access: | http://www.advancesindifferenceequations.com/content/2005/548479 |
id |
doaj-f942d75369f64325b11c914639546b4a |
---|---|
record_format |
Article |
spelling |
doaj-f942d75369f64325b11c914639546b4a2020-11-25T00:58:55ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472005-01-0120051548479On the recursive sequenceDeVault RPapaschinopoulos GCamouzis E<p/> <p>Our aim in this paper is to investigate the boundedness, global asymptotic stability, and periodic character of solutions of the difference equation <it>x</it><sub><it>n</it>+1</sub> = (<it>γx</it><sub><it>n</it>-1</sub> + <it>δx</it><sub><it>n</it>-2</sub>)/(<it>x</it><sub><it>n</it></sub> + <it>x</it><sub><it>n</it>-2</sub>), <it>n</it> = 0,1,..., where the parameters <it>γ</it> and <it>δ</it> and the initial conditions are positive real numbers.</p>http://www.advancesindifferenceequations.com/content/2005/548479 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
DeVault R Papaschinopoulos G Camouzis E |
spellingShingle |
DeVault R Papaschinopoulos G Camouzis E On the recursive sequence Advances in Difference Equations |
author_facet |
DeVault R Papaschinopoulos G Camouzis E |
author_sort |
DeVault R |
title |
On the recursive sequence |
title_short |
On the recursive sequence |
title_full |
On the recursive sequence |
title_fullStr |
On the recursive sequence |
title_full_unstemmed |
On the recursive sequence |
title_sort |
on the recursive sequence |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1839 1687-1847 |
publishDate |
2005-01-01 |
description |
<p/> <p>Our aim in this paper is to investigate the boundedness, global asymptotic stability, and periodic character of solutions of the difference equation <it>x</it><sub><it>n</it>+1</sub> = (<it>γx</it><sub><it>n</it>-1</sub> + <it>δx</it><sub><it>n</it>-2</sub>)/(<it>x</it><sub><it>n</it></sub> + <it>x</it><sub><it>n</it>-2</sub>), <it>n</it> = 0,1,..., where the parameters <it>γ</it> and <it>δ</it> and the initial conditions are positive real numbers.</p> |
url |
http://www.advancesindifferenceequations.com/content/2005/548479 |
work_keys_str_mv |
AT devaultr ontherecursivesequence AT papaschinopoulosg ontherecursivesequence AT camouzise ontherecursivesequence |
_version_ |
1725219785088696320 |