Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM)
This study aims to create a model for categorizing pantun types and analyze the accuracy of support vector machines (SVM). The first stage is collecting pantun that have been labeled with pantun category. The pantun categories consist of pantun for children, pantun for young people, and pantun for e...
Main Authors: | , |
---|---|
Format: | Article |
Language: | Indonesian |
Published: |
Ikatan Ahli Indormatika Indonesia
2020-10-01
|
Series: | Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) |
Subjects: | |
Online Access: | http://jurnal.iaii.or.id/index.php/RESTI/article/view/2313 |
id |
doaj-f93e89ce0f6e464783a357d50d8116a1 |
---|---|
record_format |
Article |
spelling |
doaj-f93e89ce0f6e464783a357d50d8116a12020-11-25T04:07:02ZindIkatan Ahli Indormatika IndonesiaJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)2580-07602020-10-014591592210.29207/resti.v4i5.23132313Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM)Helena Nurramdhani Irmanda0Ria Astriratma1Universitas Pembangunan Nasional Veteran JakartaUniversitas Pembangunan Nasional Veteran JakartaThis study aims to create a model for categorizing pantun types and analyze the accuracy of support vector machines (SVM). The first stage is collecting pantun that have been labeled with pantun category. The pantun categories consist of pantun for children, pantun for young people, and pantun for elder. After collecting data, the next stage is pre-processing. This pre-processing stage makes data ready to be processed on the extraction stage. The pre-processing stage consists of text segmentation, case folding, tokenization, stop word removal, and stemming. The feature extraction stage is intended to analyze potential information and represent terms as a vector. Separating training data and testing data is necessary to be conducted before the classification process. Then the classification process is done by using multiclass SVM. The results of the classification are evaluated to obtain accuracy and will be analyzed whether the classification model is proper to be used. The results showed that SVM classified the types of pantun with accuracy of 81,91%.http://jurnal.iaii.or.id/index.php/RESTI/article/view/2313klasifikasi, svm, pantun, text mining, data mining |
collection |
DOAJ |
language |
Indonesian |
format |
Article |
sources |
DOAJ |
author |
Helena Nurramdhani Irmanda Ria Astriratma |
spellingShingle |
Helena Nurramdhani Irmanda Ria Astriratma Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) klasifikasi, svm, pantun, text mining, data mining |
author_facet |
Helena Nurramdhani Irmanda Ria Astriratma |
author_sort |
Helena Nurramdhani Irmanda |
title |
Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM) |
title_short |
Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM) |
title_full |
Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM) |
title_fullStr |
Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM) |
title_full_unstemmed |
Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM) |
title_sort |
klasifikasi jenis pantun dengan metode support vector machines (svm) |
publisher |
Ikatan Ahli Indormatika Indonesia |
series |
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) |
issn |
2580-0760 |
publishDate |
2020-10-01 |
description |
This study aims to create a model for categorizing pantun types and analyze the accuracy of support vector machines (SVM). The first stage is collecting pantun that have been labeled with pantun category. The pantun categories consist of pantun for children, pantun for young people, and pantun for elder. After collecting data, the next stage is pre-processing. This pre-processing stage makes data ready to be processed on the extraction stage. The pre-processing stage consists of text segmentation, case folding, tokenization, stop word removal, and stemming. The feature extraction stage is intended to analyze potential information and represent terms as a vector. Separating training data and testing data is necessary to be conducted before the classification process. Then the classification process is done by using multiclass SVM. The results of the classification are evaluated to obtain accuracy and will be analyzed whether the classification model is proper to be used. The results showed that SVM classified the types of pantun with accuracy of 81,91%. |
topic |
klasifikasi, svm, pantun, text mining, data mining |
url |
http://jurnal.iaii.or.id/index.php/RESTI/article/view/2313 |
work_keys_str_mv |
AT helenanurramdhaniirmanda klasifikasijenispantundenganmetodesupportvectormachinessvm AT riaastriratma klasifikasijenispantundenganmetodesupportvectormachinessvm |
_version_ |
1724429833158524928 |