Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM)

This study aims to create a model for categorizing pantun types and analyze the accuracy of support vector machines (SVM). The first stage is collecting pantun that have been labeled with pantun category. The pantun categories consist of pantun for children, pantun for young people, and pantun for e...

Full description

Bibliographic Details
Main Authors: Helena Nurramdhani Irmanda, Ria Astriratma
Format: Article
Language:Indonesian
Published: Ikatan Ahli Indormatika Indonesia 2020-10-01
Series:Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Subjects:
Online Access:http://jurnal.iaii.or.id/index.php/RESTI/article/view/2313
id doaj-f93e89ce0f6e464783a357d50d8116a1
record_format Article
spelling doaj-f93e89ce0f6e464783a357d50d8116a12020-11-25T04:07:02ZindIkatan Ahli Indormatika IndonesiaJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)2580-07602020-10-014591592210.29207/resti.v4i5.23132313Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM)Helena Nurramdhani Irmanda0Ria Astriratma1Universitas Pembangunan Nasional Veteran JakartaUniversitas Pembangunan Nasional Veteran JakartaThis study aims to create a model for categorizing pantun types and analyze the accuracy of support vector machines (SVM). The first stage is collecting pantun that have been labeled with pantun category. The pantun categories consist of pantun for children, pantun for young people, and pantun for elder. After collecting data, the next stage is pre-processing. This pre-processing stage makes data ready to be processed on the extraction stage. The pre-processing stage consists of text segmentation, case folding, tokenization, stop word removal, and stemming. The feature extraction stage is intended to analyze potential information and represent terms as a vector. Separating training data and testing data is necessary to be conducted before the classification process. Then the classification process is done by using multiclass SVM. The results of the classification are evaluated to obtain accuracy and will be analyzed whether the classification model is proper to be used. The results showed that SVM classified the types of pantun with accuracy of 81,91%.http://jurnal.iaii.or.id/index.php/RESTI/article/view/2313klasifikasi, svm, pantun, text mining, data mining
collection DOAJ
language Indonesian
format Article
sources DOAJ
author Helena Nurramdhani Irmanda
Ria Astriratma
spellingShingle Helena Nurramdhani Irmanda
Ria Astriratma
Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM)
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
klasifikasi, svm, pantun, text mining, data mining
author_facet Helena Nurramdhani Irmanda
Ria Astriratma
author_sort Helena Nurramdhani Irmanda
title Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM)
title_short Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM)
title_full Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM)
title_fullStr Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM)
title_full_unstemmed Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM)
title_sort klasifikasi jenis pantun dengan metode support vector machines (svm)
publisher Ikatan Ahli Indormatika Indonesia
series Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
issn 2580-0760
publishDate 2020-10-01
description This study aims to create a model for categorizing pantun types and analyze the accuracy of support vector machines (SVM). The first stage is collecting pantun that have been labeled with pantun category. The pantun categories consist of pantun for children, pantun for young people, and pantun for elder. After collecting data, the next stage is pre-processing. This pre-processing stage makes data ready to be processed on the extraction stage. The pre-processing stage consists of text segmentation, case folding, tokenization, stop word removal, and stemming. The feature extraction stage is intended to analyze potential information and represent terms as a vector. Separating training data and testing data is necessary to be conducted before the classification process. Then the classification process is done by using multiclass SVM. The results of the classification are evaluated to obtain accuracy and will be analyzed whether the classification model is proper to be used. The results showed that SVM classified the types of pantun with accuracy of 81,91%.
topic klasifikasi, svm, pantun, text mining, data mining
url http://jurnal.iaii.or.id/index.php/RESTI/article/view/2313
work_keys_str_mv AT helenanurramdhaniirmanda klasifikasijenispantundenganmetodesupportvectormachinessvm
AT riaastriratma klasifikasijenispantundenganmetodesupportvectormachinessvm
_version_ 1724429833158524928