Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs
Khaled AbouAitah,1,2 Anna Swiderska-Sroda,1 Ahmed Kandeil,3 Asmaa MM Salman4,†, Jacek Wojnarowicz,1 Mohamed A Ali,3 Agnieszka Opalinska,1 Stanislaw Gierlotka,1 Tomasz Ciach,5 Witold Lojkowski1 1Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Acade...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2020-07-01
|
Series: | International Journal of Nanomedicine |
Subjects: | |
Online Access: | https://www.dovepress.com/virucidal-action-against-avian-influenza-h5n1-virus-and-immunomodulato-peer-reviewed-article-IJN |
id |
doaj-f912003f84de493cba6b6fc368b3bdc5 |
---|---|
record_format |
Article |
spelling |
doaj-f912003f84de493cba6b6fc368b3bdc52020-11-25T03:37:50ZengDove Medical PressInternational Journal of Nanomedicine1178-20132020-07-01Volume 155181520255541Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural ProdrugsAbouAitah KSwiderska-Sroda AKandeil ASalman AMMWojnarowicz JAli MAOpalinska AGierlotka SCiach TLojkowski WKhaled AbouAitah,1,2 Anna Swiderska-Sroda,1 Ahmed Kandeil,3 Asmaa MM Salman4,†, Jacek Wojnarowicz,1 Mohamed A Ali,3 Agnieszka Opalinska,1 Stanislaw Gierlotka,1 Tomasz Ciach,5 Witold Lojkowski1 1Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland; 2Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C.12622, Dokki, Giza, Egypt; 3Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environmental Research Division, National Research Centre (NRC) P.C.12622, Dokki, Giza, Egypt; 4Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C. 12622, Dokki, Giza, Egypt; 5Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland†AMM Salman passed away on June 3, 2019Correspondence: Khaled AbouAitah; Witold Lojkowski Email k.abouaitah@labnano.pl; w.lojkowski@labnano.plBackground: Combating infectious diseases caused by influenza virus is a major challenge due to its resistance to available drugs and vaccines, side effects, and cost of treatment. Nanomedicines are being developed to allow targeted delivery of drugs to attack specific cells or viruses.Materials and Methods: In this study, mesoporous silica nanoparticles (MSNs) functionalized with amino groups and loaded with natural prodrugs of shikimic acid (SH), quercetin (QR) or both were explored as a novel antiviral nanoformulations targeting the highly pathogenic avian influenza H5N1 virus. Also, the immunomodulatory effects were investigated in vitro tests and anti-inflammatory activity was determined in vivo using the acute carrageenan-induced paw edema rat model.Results: Prodrugs alone or the MSNs displayed weaker antiviral effects as evidenced by virus titers and plaque formation compared to nanoformulations. The MSNs-NH2-SH and MSNs-NH2-SH-QR2 nanoformulations displayed a strong virucidal by inactivating the H5N1 virus. They induced also strong immunomodulatory effects: they inhibited cytokines (TNF-α, IL-1β) and nitric oxide production by approximately 50% for MSNs-NH2-SH-QR2 (containing both SH and QR). Remarkable anti-inflammatory effects were observed during in vivo tests in an acute carrageenan-induced rat model.Conclusion: Our preliminary findings show the potential of nanotechnology for the application of natural prodrug substances to produce a novel safe, effective, and affordable antiviral drug.Keywords: virucidal action, influenza H5N1 virus, immunomodulatory and anti-inflammatory, nanoformulations-drug delivery system, shikimic acid and quercetin natural prodrugs, mesoporous silica nanoparticleshttps://www.dovepress.com/virucidal-action-against-avian-influenza-h5n1-virus-and-immunomodulato-peer-reviewed-article-IJNvirucidal actioninfluenza h5n1virusimmunomodulatory and anti-inflammatorynanoformulations-drug delivery systemshikimic acid & quercetin natural prodrugsmesoporous silica nanoparticles. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
AbouAitah K Swiderska-Sroda A Kandeil A Salman AMM Wojnarowicz J Ali MA Opalinska A Gierlotka S Ciach T Lojkowski W |
spellingShingle |
AbouAitah K Swiderska-Sroda A Kandeil A Salman AMM Wojnarowicz J Ali MA Opalinska A Gierlotka S Ciach T Lojkowski W Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs International Journal of Nanomedicine virucidal action influenza h5n1virus immunomodulatory and anti-inflammatory nanoformulations-drug delivery system shikimic acid & quercetin natural prodrugs mesoporous silica nanoparticles. |
author_facet |
AbouAitah K Swiderska-Sroda A Kandeil A Salman AMM Wojnarowicz J Ali MA Opalinska A Gierlotka S Ciach T Lojkowski W |
author_sort |
AbouAitah K |
title |
Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs |
title_short |
Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs |
title_full |
Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs |
title_fullStr |
Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs |
title_full_unstemmed |
Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs |
title_sort |
virucidal action against avian influenza h5n1 virus and immunomodulatory effects of nanoformulations consisting of mesoporous silica nanoparticles loaded with natural prodrugs |
publisher |
Dove Medical Press |
series |
International Journal of Nanomedicine |
issn |
1178-2013 |
publishDate |
2020-07-01 |
description |
Khaled AbouAitah,1,2 Anna Swiderska-Sroda,1 Ahmed Kandeil,3 Asmaa MM Salman4,†, Jacek Wojnarowicz,1 Mohamed A Ali,3 Agnieszka Opalinska,1 Stanislaw Gierlotka,1 Tomasz Ciach,5 Witold Lojkowski1 1Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland; 2Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C.12622, Dokki, Giza, Egypt; 3Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environmental Research Division, National Research Centre (NRC) P.C.12622, Dokki, Giza, Egypt; 4Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C. 12622, Dokki, Giza, Egypt; 5Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland†AMM Salman passed away on June 3, 2019Correspondence: Khaled AbouAitah; Witold Lojkowski Email k.abouaitah@labnano.pl; w.lojkowski@labnano.plBackground: Combating infectious diseases caused by influenza virus is a major challenge due to its resistance to available drugs and vaccines, side effects, and cost of treatment. Nanomedicines are being developed to allow targeted delivery of drugs to attack specific cells or viruses.Materials and Methods: In this study, mesoporous silica nanoparticles (MSNs) functionalized with amino groups and loaded with natural prodrugs of shikimic acid (SH), quercetin (QR) or both were explored as a novel antiviral nanoformulations targeting the highly pathogenic avian influenza H5N1 virus. Also, the immunomodulatory effects were investigated in vitro tests and anti-inflammatory activity was determined in vivo using the acute carrageenan-induced paw edema rat model.Results: Prodrugs alone or the MSNs displayed weaker antiviral effects as evidenced by virus titers and plaque formation compared to nanoformulations. The MSNs-NH2-SH and MSNs-NH2-SH-QR2 nanoformulations displayed a strong virucidal by inactivating the H5N1 virus. They induced also strong immunomodulatory effects: they inhibited cytokines (TNF-α, IL-1β) and nitric oxide production by approximately 50% for MSNs-NH2-SH-QR2 (containing both SH and QR). Remarkable anti-inflammatory effects were observed during in vivo tests in an acute carrageenan-induced rat model.Conclusion: Our preliminary findings show the potential of nanotechnology for the application of natural prodrug substances to produce a novel safe, effective, and affordable antiviral drug.Keywords: virucidal action, influenza H5N1 virus, immunomodulatory and anti-inflammatory, nanoformulations-drug delivery system, shikimic acid and quercetin natural prodrugs, mesoporous silica nanoparticles |
topic |
virucidal action influenza h5n1virus immunomodulatory and anti-inflammatory nanoformulations-drug delivery system shikimic acid & quercetin natural prodrugs mesoporous silica nanoparticles. |
url |
https://www.dovepress.com/virucidal-action-against-avian-influenza-h5n1-virus-and-immunomodulato-peer-reviewed-article-IJN |
work_keys_str_mv |
AT abouaitahk virucidalactionagainstavianinfluenzah5n1virusandimmunomodulatoryeffectsofnanoformulationsconsistingofmesoporoussilicananoparticlesloadedwithnaturalprodrugs AT swiderskasrodaa virucidalactionagainstavianinfluenzah5n1virusandimmunomodulatoryeffectsofnanoformulationsconsistingofmesoporoussilicananoparticlesloadedwithnaturalprodrugs AT kandeila virucidalactionagainstavianinfluenzah5n1virusandimmunomodulatoryeffectsofnanoformulationsconsistingofmesoporoussilicananoparticlesloadedwithnaturalprodrugs AT salmanamm virucidalactionagainstavianinfluenzah5n1virusandimmunomodulatoryeffectsofnanoformulationsconsistingofmesoporoussilicananoparticlesloadedwithnaturalprodrugs AT wojnarowiczj virucidalactionagainstavianinfluenzah5n1virusandimmunomodulatoryeffectsofnanoformulationsconsistingofmesoporoussilicananoparticlesloadedwithnaturalprodrugs AT alima virucidalactionagainstavianinfluenzah5n1virusandimmunomodulatoryeffectsofnanoformulationsconsistingofmesoporoussilicananoparticlesloadedwithnaturalprodrugs AT opalinskaa virucidalactionagainstavianinfluenzah5n1virusandimmunomodulatoryeffectsofnanoformulationsconsistingofmesoporoussilicananoparticlesloadedwithnaturalprodrugs AT gierlotkas virucidalactionagainstavianinfluenzah5n1virusandimmunomodulatoryeffectsofnanoformulationsconsistingofmesoporoussilicananoparticlesloadedwithnaturalprodrugs AT ciacht virucidalactionagainstavianinfluenzah5n1virusandimmunomodulatoryeffectsofnanoformulationsconsistingofmesoporoussilicananoparticlesloadedwithnaturalprodrugs AT lojkowskiw virucidalactionagainstavianinfluenzah5n1virusandimmunomodulatoryeffectsofnanoformulationsconsistingofmesoporoussilicananoparticlesloadedwithnaturalprodrugs |
_version_ |
1724543491566993408 |