Summary: | Recently, graph neural networks (GNNs) have achieved great success in dealing with graph-based data. The basic idea of GNNs is iteratively aggregating the information from neighbors, which is a special form of Laplacian smoothing. However, most of GNNs fall into the over-smoothing problem, i.e., when the model goes deeper, the learned representations become indistinguishable. This reflects the inability of the current GNNs to explore the global graph structure. In this paper, we propose a novel graph neural network to address this problem. A rejection mechanism is designed to address the over-smoothing problem, and a dilated graph convolution kernel is presented to capture the high-level graph structure. A number of experimental results demonstrate that the proposed model outperforms the state-of-the-art GNNs, and can effectively overcome the over-smoothing problem.
|