Nonperturbative dynamics of (2+1)d ϕ 4-theory from Hamiltonian truncation

Abstract We use Lightcone Conformal Truncation (LCT)—a version of Hamiltonian truncation — to study the nonperturbative, real-time dynamics of ϕ 4-theory in 2+1 dimensions. This theory has UV divergences that need to be regulated. We review how, in a Hamiltonian framework with a total energy cutoff,...

Full description

Bibliographic Details
Main Authors: Nikhil Anand, Emanuel Katz, Zuhair U. Khandker, Matthew T. Walters
Format: Article
Language:English
Published: SpringerOpen 2021-05-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP05(2021)190
Description
Summary:Abstract We use Lightcone Conformal Truncation (LCT)—a version of Hamiltonian truncation — to study the nonperturbative, real-time dynamics of ϕ 4-theory in 2+1 dimensions. This theory has UV divergences that need to be regulated. We review how, in a Hamiltonian framework with a total energy cutoff, renormalization is necessarily state-dependent, and UV sensitivity cannot be canceled with standard local operator counter-terms. To overcome this problem, we present a prescription for constructing the appropriate state-dependent counterterms for (2+1)d ϕ 4-theory in lightcone quantization. We then use LCT with this counterterm prescription to study ϕ 4-theory, focusing on the ℤ2 symmetry-preserving phase. Specifically, we compute the spectrum as a function of the coupling and demonstrate the closing of the mass gap at a (scheme-dependent) critical coupling. We also compute Lorentz-invariant two-point functions, both at generic strong coupling and near the critical point, where we demonstrate IR universality and the vanishing of the trace of the stress tensor.
ISSN:1029-8479