Remote Sensing of Aboveground Biomass in Tropical Secondary Forests: A Review

Tropical landscapes are, in general, a mosaic of pasture, agriculture, and forest undergoing various stages of succession. Forest succession is comprised of continuous structural changes over time and results in increases in aboveground biomass (AGB). New remote sensing methods, including sensors, i...

Full description

Bibliographic Details
Main Authors: J. M. Barbosa, E. N. Broadbent, M. D. Bitencourt
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:International Journal of Forestry Research
Online Access:http://dx.doi.org/10.1155/2014/715796
Description
Summary:Tropical landscapes are, in general, a mosaic of pasture, agriculture, and forest undergoing various stages of succession. Forest succession is comprised of continuous structural changes over time and results in increases in aboveground biomass (AGB). New remote sensing methods, including sensors, image processing, statistical methods, and uncertainty evaluations, are constantly being developed to estimate biophysical forest changes. We review 318 peer-reviewed studies related to the use of remotely sensed AGB estimations in tropical forest succession studies and summarize their geographic distribution, sensors and methods used, and their most frequent ecological inferences. Remotely sensed AGB is broadly used in forest management studies, conservation status evaluations, carbon source and sink investigations, and for studies of the relationships between environmental conditions and forest structure. Uncertainties in AGB estimations were found to be heterogeneous with biases related to sensor type, processing methodology, ground truthing availability, and forest characteristics. Remotely sensed AGB of successional forests is more reliable for the study of spatial patterns of forest succession and over large time scales than that of individual stands. Remote sensing of temporal patterns in biomass requires further study, in particular, as it is critical for understanding forest regrowth at scales useful for regional or global analyses.
ISSN:1687-9368
1687-9376