Orthodox Γ-semigroups

Let M={a,b,c,…} and Γ={α,β,γ,…} be two non-empty sets. M is called a Γ-semigroup if aαb∈M, for α∈Γ and b∈M and (aαb)βc=aα(bβc), for all a,b,c∈M and for all α,β∈Γ. A semigroup can be considered as a Γ-semigroup. In this paper we introduce orthodox Γ-semigroups and extend different results of orthodox...

Full description

Bibliographic Details
Main Authors: M. K. Sen, N. K. Saha
Format: Article
Language:English
Published: Hindawi Limited 1990-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S016117129000076X
id doaj-f8b8fa11af864056ba274067ffc1b208
record_format Article
spelling doaj-f8b8fa11af864056ba274067ffc1b2082020-11-24T21:52:08ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251990-01-0113352753410.1155/S016117129000076XOrthodox Γ-semigroupsM. K. Sen0N. K. Saha1Department of Pure Mathematics, 35, Ballygunge Circular Road, Calcutta 700 019, IndiaDepartment of Mathematics, Pingla Thana Mahavidyalaya, P.O. Maligram, Dist. Midnapore, Pin, 721 140, IndiaLet M={a,b,c,…} and Γ={α,β,γ,…} be two non-empty sets. M is called a Γ-semigroup if aαb∈M, for α∈Γ and b∈M and (aαb)βc=aα(bβc), for all a,b,c∈M and for all α,β∈Γ. A semigroup can be considered as a Γ-semigroup. In this paper we introduce orthodox Γ-semigroups and extend different results of orthodox semigroups to orthodox Γ-semigroups.http://dx.doi.org/10.1155/S016117129000076X
collection DOAJ
language English
format Article
sources DOAJ
author M. K. Sen
N. K. Saha
spellingShingle M. K. Sen
N. K. Saha
Orthodox Γ-semigroups
International Journal of Mathematics and Mathematical Sciences
author_facet M. K. Sen
N. K. Saha
author_sort M. K. Sen
title Orthodox Γ-semigroups
title_short Orthodox Γ-semigroups
title_full Orthodox Γ-semigroups
title_fullStr Orthodox Γ-semigroups
title_full_unstemmed Orthodox Γ-semigroups
title_sort orthodox γ-semigroups
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 1990-01-01
description Let M={a,b,c,…} and Γ={α,β,γ,…} be two non-empty sets. M is called a Γ-semigroup if aαb∈M, for α∈Γ and b∈M and (aαb)βc=aα(bβc), for all a,b,c∈M and for all α,β∈Γ. A semigroup can be considered as a Γ-semigroup. In this paper we introduce orthodox Γ-semigroups and extend different results of orthodox semigroups to orthodox Γ-semigroups.
url http://dx.doi.org/10.1155/S016117129000076X
work_keys_str_mv AT mksen orthodoxgsemigroups
AT nksaha orthodoxgsemigroups
_version_ 1725876708139073536