Orthodox Γ-semigroups
Let M={a,b,c,…} and Γ={α,β,γ,…} be two non-empty sets. M is called a Γ-semigroup if aαb∈M, for α∈Γ and b∈M and (aαb)βc=aα(bβc), for all a,b,c∈M and for all α,β∈Γ. A semigroup can be considered as a Γ-semigroup. In this paper we introduce orthodox Γ-semigroups and extend different results of orthodox...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1990-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S016117129000076X |
id |
doaj-f8b8fa11af864056ba274067ffc1b208 |
---|---|
record_format |
Article |
spelling |
doaj-f8b8fa11af864056ba274067ffc1b2082020-11-24T21:52:08ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251990-01-0113352753410.1155/S016117129000076XOrthodox Γ-semigroupsM. K. Sen0N. K. Saha1Department of Pure Mathematics, 35, Ballygunge Circular Road, Calcutta 700 019, IndiaDepartment of Mathematics, Pingla Thana Mahavidyalaya, P.O. Maligram, Dist. Midnapore, Pin, 721 140, IndiaLet M={a,b,c,…} and Γ={α,β,γ,…} be two non-empty sets. M is called a Γ-semigroup if aαb∈M, for α∈Γ and b∈M and (aαb)βc=aα(bβc), for all a,b,c∈M and for all α,β∈Γ. A semigroup can be considered as a Γ-semigroup. In this paper we introduce orthodox Γ-semigroups and extend different results of orthodox semigroups to orthodox Γ-semigroups.http://dx.doi.org/10.1155/S016117129000076X |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. K. Sen N. K. Saha |
spellingShingle |
M. K. Sen N. K. Saha Orthodox Γ-semigroups International Journal of Mathematics and Mathematical Sciences |
author_facet |
M. K. Sen N. K. Saha |
author_sort |
M. K. Sen |
title |
Orthodox Γ-semigroups |
title_short |
Orthodox Γ-semigroups |
title_full |
Orthodox Γ-semigroups |
title_fullStr |
Orthodox Γ-semigroups |
title_full_unstemmed |
Orthodox Γ-semigroups |
title_sort |
orthodox γ-semigroups |
publisher |
Hindawi Limited |
series |
International Journal of Mathematics and Mathematical Sciences |
issn |
0161-1712 1687-0425 |
publishDate |
1990-01-01 |
description |
Let M={a,b,c,…} and Γ={α,β,γ,…} be two non-empty sets. M is called a Γ-semigroup if aαb∈M, for α∈Γ and b∈M and (aαb)βc=aα(bβc), for all a,b,c∈M and for all α,β∈Γ. A semigroup can be considered as a Γ-semigroup. In this paper we introduce orthodox Γ-semigroups and extend different results of orthodox semigroups to orthodox Γ-semigroups. |
url |
http://dx.doi.org/10.1155/S016117129000076X |
work_keys_str_mv |
AT mksen orthodoxgsemigroups AT nksaha orthodoxgsemigroups |
_version_ |
1725876708139073536 |