Application of the Hybrid-Maize model for limits to maize productivity analysis in a semiarid environment

Effects of meteorological variables on crop production can be evaluated using various models. We have evaluated the ability of the Hybrid-Maize model to simulate growth, development and grain yield of maize (Zea mays L.) cultivated on the Loess Plateau, China, and applied it to assess effects of met...

Full description

Bibliographic Details
Main Authors: Yi Liu, Shenjiao Yang, Shiqing Li, Fang Chen
Format: Article
Language:English
Published: Universidade de São Paulo 2012-10-01
Series:Scientia Agricola
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162012000500003
Description
Summary:Effects of meteorological variables on crop production can be evaluated using various models. We have evaluated the ability of the Hybrid-Maize model to simulate growth, development and grain yield of maize (Zea mays L.) cultivated on the Loess Plateau, China, and applied it to assess effects of meteorological variations on the performance of maize under rain-fed and irrigated conditions. The model was calibrated and evaluated with data obtained from field experiments performed in 2007 and 2008, then applied to yield determinants using daily weather data for 2005-2009, in simulations under both rain-fed and irrigated conditions. The model accurately simulated Leaf Area Index , biomass, and soil water data from the field experiments in both years, with normalized percentage root mean square errors < 25 %. Gr.Y and yield components were also accurately simulated, with prediction deviations ranging from -2.3 % to 22.0 % for both years. According to the simulations, the maize potential productivity averaged 9.7 t ha-1 under rain-fed conditions and 11.53 t ha-1 under irrigated conditions, and the average rain-fed yield was 1.83 t ha-1 less than the average potential yield with irrigation. Soil moisture status analysis demonstrated that substantial potential yield may have been lost due to water stress under rain-fed conditions.
ISSN:0103-9016
1678-992X