Summary: | CO oxidation in the catalytic converter hasn’t showed best performance particularly during cold start-up, since the catalyst is not active during this period. The purpose of this experiment was to develop the forced unsteady state operation procedure of CO oxidation using 0.05%-w Pt/γ-Al2O3 and space velocity of 0.406 mmol/s/gram. The catalytic converter was gradually ramped-up, while introducing the feed gas containing CO in the air. The feed gas was modulated following a square wave model with switching time variation at 3, 6, 15, and 30 s and various operation modes. To gain the intrinsic reaction rate, the external mass transfer criterion was determined. Ramping-up the temperature from 50 until 150°C increased the CO conversion with different profiles between steady state and dynamic flow rate. The dynamic system with modulated CO feed flow gave lower light-off temperature and higher average CO conversion than the steady state system which gave light off temperature 115°C and average CO conversion of 48.86%. The switching time of 3 s gave highest average CO conversion during ramping-up, which was 79.35%. Meanwhile the dynamic operation system with modulated feed flow gave higher lightoff temperature and lower average CO conversion than steady state system.
|