Hand Movement Classification Using Burg Reflection Coefficients

Classification of electromyographic signals has a wide range of applications, from clinical diagnosis of different muscular diseases to biomedical engineering, where their use as input for the control of prosthetic devices has become a hot topic of research. The challenge of classifying these signal...

Full description

Bibliographic Details
Main Authors: Daniel Ramírez-Martínez, Mariel Alfaro-Ponce, Oleksiy Pogrebnyak, Mario Aldape-Pérez, Amadeo-José Argüelles-Cruz
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/19/3/475
id doaj-f880686d739b4be39fb8e978b8e94ab1
record_format Article
spelling doaj-f880686d739b4be39fb8e978b8e94ab12020-11-25T01:29:15ZengMDPI AGSensors1424-82202019-01-0119347510.3390/s19030475s19030475Hand Movement Classification Using Burg Reflection CoefficientsDaniel Ramírez-Martínez0Mariel Alfaro-Ponce1Oleksiy Pogrebnyak2Mario Aldape-Pérez3Amadeo-José Argüelles-Cruz4Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. “Juan de Dios Bátiz” s/n esq. Miguel Othón de Mendizábal, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Ciudad de México C.P. 07738, MexicoDepartamento de Ciencias e Ingenierías, Universidad Iberoamericana Puebla, Blvrd del Niño Poblano 2901, Reserva Territorial Atlixcáyotl, Centro Comercial Puebla, San Andrés Cholula 72810, Puebla, MexicoCentro de Investigación en Computación, Instituto Politécnico Nacional, Av. “Juan de Dios Bátiz” s/n esq. Miguel Othón de Mendizábal, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Ciudad de México C.P. 07738, MexicoCentro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Av. “Juan de Dios Bátiz” s/n esq. Miguel Othón de Mendizábal, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Ciudad de México C.P. 07700, MexicoCentro de Investigación en Computación, Instituto Politécnico Nacional, Av. “Juan de Dios Bátiz” s/n esq. Miguel Othón de Mendizábal, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Ciudad de México C.P. 07738, MexicoClassification of electromyographic signals has a wide range of applications, from clinical diagnosis of different muscular diseases to biomedical engineering, where their use as input for the control of prosthetic devices has become a hot topic of research. The challenge of classifying these signals relies on the accuracy of the proposed algorithm and the possibility of its implementation in hardware. This paper considers the problem of electromyography signal classification, solved with the proposed signal processing and feature extraction stages, with the focus lying on the signal model and time domain characteristics for better classification accuracy. The proposal considers a simple preprocessing technique that produces signals suitable for feature extraction and the Burg reflection coefficients to form learning and classification patterns. These coefficients yield a competitive classification rate compared to the time domain features used. Sometimes, the feature extraction from electromyographic signals has shown that the procedure can omit less useful traits for machine learning models. Using feature selection algorithms provides a higher classification performance with as few traits as possible. The algorithms achieved a high classification rate up to 100% with low pattern dimensionality, with other kinds of uncorrelated attributes for hand movement identification.https://www.mdpi.com/1424-8220/19/3/475electromyographyhand movementhealth monitoringmaximum entropy reflection coefficientsclassification algorithmsmachine learningfeature selection
collection DOAJ
language English
format Article
sources DOAJ
author Daniel Ramírez-Martínez
Mariel Alfaro-Ponce
Oleksiy Pogrebnyak
Mario Aldape-Pérez
Amadeo-José Argüelles-Cruz
spellingShingle Daniel Ramírez-Martínez
Mariel Alfaro-Ponce
Oleksiy Pogrebnyak
Mario Aldape-Pérez
Amadeo-José Argüelles-Cruz
Hand Movement Classification Using Burg Reflection Coefficients
Sensors
electromyography
hand movement
health monitoring
maximum entropy reflection coefficients
classification algorithms
machine learning
feature selection
author_facet Daniel Ramírez-Martínez
Mariel Alfaro-Ponce
Oleksiy Pogrebnyak
Mario Aldape-Pérez
Amadeo-José Argüelles-Cruz
author_sort Daniel Ramírez-Martínez
title Hand Movement Classification Using Burg Reflection Coefficients
title_short Hand Movement Classification Using Burg Reflection Coefficients
title_full Hand Movement Classification Using Burg Reflection Coefficients
title_fullStr Hand Movement Classification Using Burg Reflection Coefficients
title_full_unstemmed Hand Movement Classification Using Burg Reflection Coefficients
title_sort hand movement classification using burg reflection coefficients
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2019-01-01
description Classification of electromyographic signals has a wide range of applications, from clinical diagnosis of different muscular diseases to biomedical engineering, where their use as input for the control of prosthetic devices has become a hot topic of research. The challenge of classifying these signals relies on the accuracy of the proposed algorithm and the possibility of its implementation in hardware. This paper considers the problem of electromyography signal classification, solved with the proposed signal processing and feature extraction stages, with the focus lying on the signal model and time domain characteristics for better classification accuracy. The proposal considers a simple preprocessing technique that produces signals suitable for feature extraction and the Burg reflection coefficients to form learning and classification patterns. These coefficients yield a competitive classification rate compared to the time domain features used. Sometimes, the feature extraction from electromyographic signals has shown that the procedure can omit less useful traits for machine learning models. Using feature selection algorithms provides a higher classification performance with as few traits as possible. The algorithms achieved a high classification rate up to 100% with low pattern dimensionality, with other kinds of uncorrelated attributes for hand movement identification.
topic electromyography
hand movement
health monitoring
maximum entropy reflection coefficients
classification algorithms
machine learning
feature selection
url https://www.mdpi.com/1424-8220/19/3/475
work_keys_str_mv AT danielramirezmartinez handmovementclassificationusingburgreflectioncoefficients
AT marielalfaroponce handmovementclassificationusingburgreflectioncoefficients
AT oleksiypogrebnyak handmovementclassificationusingburgreflectioncoefficients
AT marioaldapeperez handmovementclassificationusingburgreflectioncoefficients
AT amadeojosearguellescruz handmovementclassificationusingburgreflectioncoefficients
_version_ 1725097517048135680