Perturbations of Regularized Determinants of Operators in a Banach Space
Let be a separable Banach space with the approximation property. For an integer , let be a quasinormed ideal of compact operators in with a quasinorm , such that , where are the eigenvalues of and is a constant independent of . We suggest upper and lower bounds for the regularized determinants...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2013/409604 |
Summary: | Let be a separable Banach space with the approximation property. For an integer , let be a quasinormed ideal of compact operators in with a quasinorm , such that , where are the eigenvalues of and is a constant independent of . We suggest upper and lower bounds for the regularized determinants of operators from as well as bounds for the difference between determinants of two operators. Applications to the -summing operators, Hille-Tamarkin integral operators, Hille-Tamarkin matrices, Schatten-von Neumann operators, and Lorentz operator ideals are discussed. |
---|---|
ISSN: | 2314-4629 2314-4785 |