Numerical Simulations and Control of Offshore Energy Harvesting Using Piezoelectric Materials in a Portal Frame Structure

Buoy systems are an alternative for micropowering small devices in remote locations. Portal frames are very useful to harvest the energy of the waves into usable energy. Thus, using the current models for a portal frame in the literature and the spectrum of available energy in sea waves, a nonlinear...

Full description

Bibliographic Details
Main Authors: Wagner B. Lenz, Mauricio A. Ribeiro, Rodrigo T. Rocha, Jose M. Balthazar, Angelo M. Tusset
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/6651999
Description
Summary:Buoy systems are an alternative for micropowering small devices in remote locations. Portal frames are very useful to harvest the energy of the waves into usable energy. Thus, using the current models for a portal frame in the literature and the spectrum of available energy in sea waves, a nonlinear mathematical model accounting for the coupling of a nonlinear piezoelectric material is considered. The neighbour of selected variables is analyzed and then optimized by a process utilizing the particle swarm optimization (PSO) algorithm. Furthermore, an optimal control using the linear-quadratic regulator (LQR) controller is applied to control the load resistance of the piezoelectric circuit. The optimization process and the LQR show to be effective. The results show a general gain due to optimization and a relatively small gain using the controller.
ISSN:1875-9203