Reduction of magnetic noise limits of orthogonal fluxgate sensor

We have further lowered the white noise of an orthogonal fluxgate to about 0.3 pT/√Hz @ 8 Hz. So far, this is the lowest noise reported for a fluxgate magnetometer. The noise reduction was achieved by introducing a JFET input stage, embedded directly to the sensor head, allowing for high common-mode...

Full description

Bibliographic Details
Main Authors: Michal Dressler, Michal Janosek, Mattia Butta
Format: Article
Language:English
Published: AIP Publishing LLC 2021-01-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/9.0000231
Description
Summary:We have further lowered the white noise of an orthogonal fluxgate to about 0.3 pT/√Hz @ 8 Hz. So far, this is the lowest noise reported for a fluxgate magnetometer. The noise reduction was achieved by introducing a JFET input stage, embedded directly to the sensor head, allowing for high common-mode rejection and negligible loading of the resonant circuit. The origin of the noise was investigated by correlation measurements and we concluded that, at least in the white noise region, we observe the magnetic noise of the sensor, with about 0.1 pT/√Hz white noise contribution by the electronics. We were finally able to obtain sensor noise floor below 1 pT/√Hz @ 1 Hz also in a feedback-compensated closed-loop. Closed-loop operation allows for higher magnetometer stability and operation in Earth’s magnetic field without deteriorating its noise performance.
ISSN:2158-3226