Seamless Switching Control Technology for the Grid-Connected Converter in Micro-Grids

In order to ensure the reliable power supply of the local load in the micro-grid (MG), a seamless switching control technology (SSCT) suitable for grid-connected converter (GCC) is proposed. This technology includes silicon-controlled rectifiers (SCR) forced shutdown control strategy (SCR-FSCS) and...

Full description

Bibliographic Details
Main Authors: Changli Shi, Tongzhen Wei, Yushu Sun, Dongqiang Jia, Tianchu Li
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/12/2109
Description
Summary:In order to ensure the reliable power supply of the local load in the micro-grid (MG), a seamless switching control technology (SSCT) suitable for grid-connected converter (GCC) is proposed. This technology includes silicon-controlled rectifiers (SCR) forced shutdown control strategy (SCR-FSCS) and three-loop control strategy (TLCS). The SCR-SSCT adjusts the load voltage in real time to form a back voltage at the grid-connected inductor, which greatly reduces the SCR shutdown time and ensures the reliability of local load power supply. The TLCS can easily realize the switching between the current source mode and the voltage source mode of the GCC. An experimental platform is established to carry out the relevant experiments. The experimental results show the rationality and effectiveness of the theoretical analysis and the proposed control technology.
ISSN:2079-9292