Newton's method for stochastic functional differential equations

In this article, we apply Newton's method to stochastic functional differential equations. The first part concerns a first-order convergence. We formulate a Gronwall-type inequality which plays an important role in the proof of the convergence theorem for the Newton method. In the second pa...

Full description

Bibliographic Details
Main Author: Monika Wrzosek
Format: Article
Language:English
Published: Texas State University 2012-08-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2012/130/abstr.html
Description
Summary:In this article, we apply Newton's method to stochastic functional differential equations. The first part concerns a first-order convergence. We formulate a Gronwall-type inequality which plays an important role in the proof of the convergence theorem for the Newton method. In the second part a probabilistic second-order convergence is studied.
ISSN:1072-6691