Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters.
In disparate organisms adaptation to thermal stress has been linked to changes in the expression of genes encoding heat-shock proteins (Hsp). The underlying genetics, however, remain elusive. We show here that two AT-rich sequence elements in the promoter region of the hsp70 gene of the fly Liriomyz...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2011-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3105046?pdf=render |
id |
doaj-f83968e0906042c592519de00ea035e5 |
---|---|
record_format |
Article |
spelling |
doaj-f83968e0906042c592519de00ea035e52020-11-25T02:42:27ZengPublic Library of Science (PLoS)PLoS ONE1932-62032011-01-0165e2030810.1371/journal.pone.0020308Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters.Bing ChenTieliu JiaRonghui MaBo ZhangLe KangIn disparate organisms adaptation to thermal stress has been linked to changes in the expression of genes encoding heat-shock proteins (Hsp). The underlying genetics, however, remain elusive. We show here that two AT-rich sequence elements in the promoter region of the hsp70 gene of the fly Liriomyza sativae that are absent in the congeneric species, Liriomyza huidobrensis, have marked cis-regulatory consequences. We studied the cis-regulatory consequences of these elements (called ATRS1 and ATRS2) by measuring the constitutive and heat-shock-induced luciferase luminescence that they drive in cells transfected with constructs carrying them modified, deleted, or intact, in the hsp70 promoter fused to the luciferase gene. The elements affected expression level markedly and in different ways: Deleting ATRS1 augmented both the constitutive and the heat-shock-induced luminescence, suggesting that this element represses transcription. Interestingly, replacing the element with random sequences of the same length and A+T content delivered the wild-type luminescence pattern, proving that the element's high A+T content is crucial for its effects. Deleting ATRS2 decreased luminescence dramatically and almost abolished heat-shock inducibility and so did replacing the element with random sequences matching the element's length and A+T content, suggesting that ATRS2's effects on transcription and heat-shock inducibility involve a common mechanism requiring at least in part the element's specific primary structure. Finally, constitutive and heat-shock luminescence were reduced strongly when two putative binding sites for the Zeste transcription factor identified within ATRS2 were altered through site-directed mutagenesis, and the heat-shock-induced luminescence increased when Zeste was over-expressed, indicating that Zeste participates in the effects mapped to ATRS2 at least in part. AT-rich sequences are common in promoters and our results suggest that they should play important roles in regulatory evolution since they can affect expression markedly and constrain promoter DNA in at least two different ways.http://europepmc.org/articles/PMC3105046?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bing Chen Tieliu Jia Ronghui Ma Bo Zhang Le Kang |
spellingShingle |
Bing Chen Tieliu Jia Ronghui Ma Bo Zhang Le Kang Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters. PLoS ONE |
author_facet |
Bing Chen Tieliu Jia Ronghui Ma Bo Zhang Le Kang |
author_sort |
Bing Chen |
title |
Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters. |
title_short |
Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters. |
title_full |
Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters. |
title_fullStr |
Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters. |
title_full_unstemmed |
Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters. |
title_sort |
evolution of hsp70 gene expression: a role for changes in at-richness within promoters. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2011-01-01 |
description |
In disparate organisms adaptation to thermal stress has been linked to changes in the expression of genes encoding heat-shock proteins (Hsp). The underlying genetics, however, remain elusive. We show here that two AT-rich sequence elements in the promoter region of the hsp70 gene of the fly Liriomyza sativae that are absent in the congeneric species, Liriomyza huidobrensis, have marked cis-regulatory consequences. We studied the cis-regulatory consequences of these elements (called ATRS1 and ATRS2) by measuring the constitutive and heat-shock-induced luciferase luminescence that they drive in cells transfected with constructs carrying them modified, deleted, or intact, in the hsp70 promoter fused to the luciferase gene. The elements affected expression level markedly and in different ways: Deleting ATRS1 augmented both the constitutive and the heat-shock-induced luminescence, suggesting that this element represses transcription. Interestingly, replacing the element with random sequences of the same length and A+T content delivered the wild-type luminescence pattern, proving that the element's high A+T content is crucial for its effects. Deleting ATRS2 decreased luminescence dramatically and almost abolished heat-shock inducibility and so did replacing the element with random sequences matching the element's length and A+T content, suggesting that ATRS2's effects on transcription and heat-shock inducibility involve a common mechanism requiring at least in part the element's specific primary structure. Finally, constitutive and heat-shock luminescence were reduced strongly when two putative binding sites for the Zeste transcription factor identified within ATRS2 were altered through site-directed mutagenesis, and the heat-shock-induced luminescence increased when Zeste was over-expressed, indicating that Zeste participates in the effects mapped to ATRS2 at least in part. AT-rich sequences are common in promoters and our results suggest that they should play important roles in regulatory evolution since they can affect expression markedly and constrain promoter DNA in at least two different ways. |
url |
http://europepmc.org/articles/PMC3105046?pdf=render |
work_keys_str_mv |
AT bingchen evolutionofhsp70geneexpressionaroleforchangesinatrichnesswithinpromoters AT tieliujia evolutionofhsp70geneexpressionaroleforchangesinatrichnesswithinpromoters AT ronghuima evolutionofhsp70geneexpressionaroleforchangesinatrichnesswithinpromoters AT bozhang evolutionofhsp70geneexpressionaroleforchangesinatrichnesswithinpromoters AT lekang evolutionofhsp70geneexpressionaroleforchangesinatrichnesswithinpromoters |
_version_ |
1724773819901542400 |