Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters.

In disparate organisms adaptation to thermal stress has been linked to changes in the expression of genes encoding heat-shock proteins (Hsp). The underlying genetics, however, remain elusive. We show here that two AT-rich sequence elements in the promoter region of the hsp70 gene of the fly Liriomyz...

Full description

Bibliographic Details
Main Authors: Bing Chen, Tieliu Jia, Ronghui Ma, Bo Zhang, Le Kang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3105046?pdf=render
id doaj-f83968e0906042c592519de00ea035e5
record_format Article
spelling doaj-f83968e0906042c592519de00ea035e52020-11-25T02:42:27ZengPublic Library of Science (PLoS)PLoS ONE1932-62032011-01-0165e2030810.1371/journal.pone.0020308Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters.Bing ChenTieliu JiaRonghui MaBo ZhangLe KangIn disparate organisms adaptation to thermal stress has been linked to changes in the expression of genes encoding heat-shock proteins (Hsp). The underlying genetics, however, remain elusive. We show here that two AT-rich sequence elements in the promoter region of the hsp70 gene of the fly Liriomyza sativae that are absent in the congeneric species, Liriomyza huidobrensis, have marked cis-regulatory consequences. We studied the cis-regulatory consequences of these elements (called ATRS1 and ATRS2) by measuring the constitutive and heat-shock-induced luciferase luminescence that they drive in cells transfected with constructs carrying them modified, deleted, or intact, in the hsp70 promoter fused to the luciferase gene. The elements affected expression level markedly and in different ways: Deleting ATRS1 augmented both the constitutive and the heat-shock-induced luminescence, suggesting that this element represses transcription. Interestingly, replacing the element with random sequences of the same length and A+T content delivered the wild-type luminescence pattern, proving that the element's high A+T content is crucial for its effects. Deleting ATRS2 decreased luminescence dramatically and almost abolished heat-shock inducibility and so did replacing the element with random sequences matching the element's length and A+T content, suggesting that ATRS2's effects on transcription and heat-shock inducibility involve a common mechanism requiring at least in part the element's specific primary structure. Finally, constitutive and heat-shock luminescence were reduced strongly when two putative binding sites for the Zeste transcription factor identified within ATRS2 were altered through site-directed mutagenesis, and the heat-shock-induced luminescence increased when Zeste was over-expressed, indicating that Zeste participates in the effects mapped to ATRS2 at least in part. AT-rich sequences are common in promoters and our results suggest that they should play important roles in regulatory evolution since they can affect expression markedly and constrain promoter DNA in at least two different ways.http://europepmc.org/articles/PMC3105046?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Bing Chen
Tieliu Jia
Ronghui Ma
Bo Zhang
Le Kang
spellingShingle Bing Chen
Tieliu Jia
Ronghui Ma
Bo Zhang
Le Kang
Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters.
PLoS ONE
author_facet Bing Chen
Tieliu Jia
Ronghui Ma
Bo Zhang
Le Kang
author_sort Bing Chen
title Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters.
title_short Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters.
title_full Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters.
title_fullStr Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters.
title_full_unstemmed Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters.
title_sort evolution of hsp70 gene expression: a role for changes in at-richness within promoters.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2011-01-01
description In disparate organisms adaptation to thermal stress has been linked to changes in the expression of genes encoding heat-shock proteins (Hsp). The underlying genetics, however, remain elusive. We show here that two AT-rich sequence elements in the promoter region of the hsp70 gene of the fly Liriomyza sativae that are absent in the congeneric species, Liriomyza huidobrensis, have marked cis-regulatory consequences. We studied the cis-regulatory consequences of these elements (called ATRS1 and ATRS2) by measuring the constitutive and heat-shock-induced luciferase luminescence that they drive in cells transfected with constructs carrying them modified, deleted, or intact, in the hsp70 promoter fused to the luciferase gene. The elements affected expression level markedly and in different ways: Deleting ATRS1 augmented both the constitutive and the heat-shock-induced luminescence, suggesting that this element represses transcription. Interestingly, replacing the element with random sequences of the same length and A+T content delivered the wild-type luminescence pattern, proving that the element's high A+T content is crucial for its effects. Deleting ATRS2 decreased luminescence dramatically and almost abolished heat-shock inducibility and so did replacing the element with random sequences matching the element's length and A+T content, suggesting that ATRS2's effects on transcription and heat-shock inducibility involve a common mechanism requiring at least in part the element's specific primary structure. Finally, constitutive and heat-shock luminescence were reduced strongly when two putative binding sites for the Zeste transcription factor identified within ATRS2 were altered through site-directed mutagenesis, and the heat-shock-induced luminescence increased when Zeste was over-expressed, indicating that Zeste participates in the effects mapped to ATRS2 at least in part. AT-rich sequences are common in promoters and our results suggest that they should play important roles in regulatory evolution since they can affect expression markedly and constrain promoter DNA in at least two different ways.
url http://europepmc.org/articles/PMC3105046?pdf=render
work_keys_str_mv AT bingchen evolutionofhsp70geneexpressionaroleforchangesinatrichnesswithinpromoters
AT tieliujia evolutionofhsp70geneexpressionaroleforchangesinatrichnesswithinpromoters
AT ronghuima evolutionofhsp70geneexpressionaroleforchangesinatrichnesswithinpromoters
AT bozhang evolutionofhsp70geneexpressionaroleforchangesinatrichnesswithinpromoters
AT lekang evolutionofhsp70geneexpressionaroleforchangesinatrichnesswithinpromoters
_version_ 1724773819901542400