Groebner Bases Based Verification Solution for SystemVerilog Concurrent Assertions
We introduce an approach exploiting the power of polynomial ring algebra to perform SystemVerilog assertion verification over digital circuit systems. This method is based on Groebner bases theory and sequential properties checking. We define a constrained subset of SVAs so that an efficient polynom...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2014/194574 |
Summary: | We introduce an approach exploiting the power
of polynomial ring algebra to perform SystemVerilog assertion verification over digital circuit systems. This method is based on Groebner bases theory and sequential properties checking. We define a constrained subset of SVAs so that an efficient polynomial modeling mechanism for both circuit descriptions and assertions can be applied. We present an algorithm framework based on the algebraic representations using Groebner bases for concurrent SVAs checking. Case studies show that computer algebra can provide canonical symbolic representations for both assertions and circuit designs and can act as a novel solver engine from the viewpoint of symbolic computation. |
---|---|
ISSN: | 1110-757X 1687-0042 |