Required Lateral Inlet Pressure Head for Automated Subsurface Drip Irrigation Management

Subsurface drip irrigation (SDI) is one of the most promising irrigation systems. It is based on small and frequent water supplies. Because SDI emitters are buried, their discharges are dependent on the water status at the vicinity of the outlets. This paper was targeted to design the SDI laterals a...

Full description

Bibliographic Details
Main Authors: Moncef Hammami, Khemaies Zayani, Hédi Ben Ali
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:International Journal of Agronomy
Online Access:http://dx.doi.org/10.1155/2013/162354
Description
Summary:Subsurface drip irrigation (SDI) is one of the most promising irrigation systems. It is based on small and frequent water supplies. Because SDI emitters are buried, their discharges are dependent on the water status at the vicinity of the outlets. This paper was targeted to design the SDI laterals accounting for the soil water-retention characteristics and the roots water extraction. The proposed approach provides systematic triggering and cut-off of irrigation events based on fixed water suctions in the vadose zone. In doing so, the soil water content is maintained at an optimal threshold ascertaining the best plant growth. Knowing the soil water-retention curve, the appropriate water suction for the plant growth, and the emitter discharge-pressure head relationship, the developed method allows the computation of the required hydraulics of the lateral (e.g., inlet pressure head, inside diameter, etc.). The proposed approach is a helpful tool for best SDI systems design and appropriate water management. An illustrative example is presented for SDI laterals’ design on tomato crop.
ISSN:1687-8159
1687-8167