Summary: | Objectives: The polyester/hydroxyapatite (polyester/HA) composites play an important role in bone tissue repairing, mostly because they mimic the composition and structure of naturally mineralized bone tissue. This review aimed to discuss commonly used geometries of polyester/HA composites, including microspheres, membranes, scaffolds and bulks, and their applications in bone tissue repairing and to discuss existed restrictions and developing trends of polyester/HA. Methods: The current review was conducted by searching Web of Science, and Google Scholar for relevant studies published related with polyester/HA composites. Selected studies were analyzed with a focus on the fabrication techniques, properties (mechanical properties, biodegradable properties and biological properties) and applications of polyester/HA composites in bone repairing. Results: A total of 111 articles were introduced to discuss the review. Different geometries of polyester/HA composites were discussed. In addition, properties and applications of polyester/HA composites were evaluated. The addition of HA into polyester can adjust the mechanical and biodegradability of composites. Besides, the addition of HA into polyester can improve its osteogenic abilities. The results showed that polyester/HA composites can ideal candidate for bone tissue repairing. Conclusion: Polyester/HA composites have many remarkable properties, such as appropriate mechanical strength, biodegradability, favorable biological properties. Diverse geometries of polyester/HA composites have been used in bone repairing, drug delivery and implant fixation. Further work needs to be done to investigate existed restrictions, including the controlled degradation rate, controlled drug release performance, well-matched mechanical properties, and novel fabrication techniques. The translational potential of this article: The present review reveals the current state of the polyester/HA composites used in bone tissue repairing, contributing to future trends of polyester/HA composites in the forthcoming future.
|