Dual Loomis-Whitney Inequalities via Information Theory

We establish lower bounds on the volume and the surface area of a geometric body using the size of its slices along different directions. In the first part of the paper, we derive volume bounds for convex bodies using generalized subadditivity properties of entropy combined with entropy bounds for l...

Full description

Bibliographic Details
Main Authors: Jing Hao, Varun Jog
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/21/8/809
id doaj-f82ab13945214fe6b3bc4ad1759e5159
record_format Article
spelling doaj-f82ab13945214fe6b3bc4ad1759e51592020-11-25T01:23:28ZengMDPI AGEntropy1099-43002019-08-0121880910.3390/e21080809e21080809Dual Loomis-Whitney Inequalities via Information TheoryJing Hao0Varun Jog1Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, USADepartment of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USAWe establish lower bounds on the volume and the surface area of a geometric body using the size of its slices along different directions. In the first part of the paper, we derive volume bounds for convex bodies using generalized subadditivity properties of entropy combined with entropy bounds for log-concave random variables. In the second part, we investigate a new notion of Fisher information which we call the <inline-formula> <math display="inline"> <semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula>-Fisher information and show that certain superadditivity properties of the <inline-formula> <math display="inline"> <semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula>-Fisher information lead to lower bounds for the surface areas of polyconvex sets in terms of its slices.https://www.mdpi.com/1099-4300/21/8/809Loomis-Whitney inequalityfisher informationvolumesurface arealog-concave distributions
collection DOAJ
language English
format Article
sources DOAJ
author Jing Hao
Varun Jog
spellingShingle Jing Hao
Varun Jog
Dual Loomis-Whitney Inequalities via Information Theory
Entropy
Loomis-Whitney inequality
fisher information
volume
surface area
log-concave distributions
author_facet Jing Hao
Varun Jog
author_sort Jing Hao
title Dual Loomis-Whitney Inequalities via Information Theory
title_short Dual Loomis-Whitney Inequalities via Information Theory
title_full Dual Loomis-Whitney Inequalities via Information Theory
title_fullStr Dual Loomis-Whitney Inequalities via Information Theory
title_full_unstemmed Dual Loomis-Whitney Inequalities via Information Theory
title_sort dual loomis-whitney inequalities via information theory
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2019-08-01
description We establish lower bounds on the volume and the surface area of a geometric body using the size of its slices along different directions. In the first part of the paper, we derive volume bounds for convex bodies using generalized subadditivity properties of entropy combined with entropy bounds for log-concave random variables. In the second part, we investigate a new notion of Fisher information which we call the <inline-formula> <math display="inline"> <semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula>-Fisher information and show that certain superadditivity properties of the <inline-formula> <math display="inline"> <semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula>-Fisher information lead to lower bounds for the surface areas of polyconvex sets in terms of its slices.
topic Loomis-Whitney inequality
fisher information
volume
surface area
log-concave distributions
url https://www.mdpi.com/1099-4300/21/8/809
work_keys_str_mv AT jinghao dualloomiswhitneyinequalitiesviainformationtheory
AT varunjog dualloomiswhitneyinequalitiesviainformationtheory
_version_ 1725122120954937344