Quasi one dimensional transport in individual electrospun composite nanofibers

We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room tempera...

Full description

Bibliographic Details
Main Authors: A. Avnon, B. Wang, S. Zhou, V. Datsyuk, S. Trotsenko, N. Grabbert, H.-D. Ngo
Format: Article
Language:English
Published: AIP Publishing LLC 2014-01-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4862168
id doaj-f80f419d6e6d4aac885782e0a00e8d2d
record_format Article
spelling doaj-f80f419d6e6d4aac885782e0a00e8d2d2020-11-24T21:18:37ZengAIP Publishing LLCAIP Advances2158-32262014-01-0141017110017110-610.1063/1.4862168010401ADVQuasi one dimensional transport in individual electrospun composite nanofibersA. Avnon0B. Wang1S. Zhou2V. Datsyuk3S. Trotsenko4N. Grabbert5H.-D. Ngo6Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, GermanyResearch Center of Microperipheric Technologies, Technische Universität Berlin, TiB4/2-1, Gustav-Meyer-Allee 25, 13355 Berlin, GermanyResearch Center of Microperipheric Technologies, Technische Universität Berlin, TiB4/2-1, Gustav-Meyer-Allee 25, 13355 Berlin, GermanyInstitut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, GermanyInstitut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, GermanyMicrosystem Engineering (FB I), University of Applied Sciences, Wilhelminenhofstr. 74 (C 525), 12459 Berlin, GermanyMicrosystem Engineering (FB I), University of Applied Sciences, Wilhelminenhofstr. 74 (C 525), 12459 Berlin, GermanyWe present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube αbulk ∼ 0.06 which agrees with theoretical predictions.http://dx.doi.org/10.1063/1.4862168
collection DOAJ
language English
format Article
sources DOAJ
author A. Avnon
B. Wang
S. Zhou
V. Datsyuk
S. Trotsenko
N. Grabbert
H.-D. Ngo
spellingShingle A. Avnon
B. Wang
S. Zhou
V. Datsyuk
S. Trotsenko
N. Grabbert
H.-D. Ngo
Quasi one dimensional transport in individual electrospun composite nanofibers
AIP Advances
author_facet A. Avnon
B. Wang
S. Zhou
V. Datsyuk
S. Trotsenko
N. Grabbert
H.-D. Ngo
author_sort A. Avnon
title Quasi one dimensional transport in individual electrospun composite nanofibers
title_short Quasi one dimensional transport in individual electrospun composite nanofibers
title_full Quasi one dimensional transport in individual electrospun composite nanofibers
title_fullStr Quasi one dimensional transport in individual electrospun composite nanofibers
title_full_unstemmed Quasi one dimensional transport in individual electrospun composite nanofibers
title_sort quasi one dimensional transport in individual electrospun composite nanofibers
publisher AIP Publishing LLC
series AIP Advances
issn 2158-3226
publishDate 2014-01-01
description We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube αbulk ∼ 0.06 which agrees with theoretical predictions.
url http://dx.doi.org/10.1063/1.4862168
work_keys_str_mv AT aavnon quasionedimensionaltransportinindividualelectrospuncompositenanofibers
AT bwang quasionedimensionaltransportinindividualelectrospuncompositenanofibers
AT szhou quasionedimensionaltransportinindividualelectrospuncompositenanofibers
AT vdatsyuk quasionedimensionaltransportinindividualelectrospuncompositenanofibers
AT strotsenko quasionedimensionaltransportinindividualelectrospuncompositenanofibers
AT ngrabbert quasionedimensionaltransportinindividualelectrospuncompositenanofibers
AT hdngo quasionedimensionaltransportinindividualelectrospuncompositenanofibers
_version_ 1726008225699987456