A General Proximal Alternating Minimization Method with Application to Nonconvex Nonsmooth 1D Total Variation Denoising

We deal with a class of problems whose objective functions are compositions of nonconvex nonsmooth functions, which has a wide range of applications in signal/image processing. We introduce a new auxiliary variable, and an efficient general proximal alternating minimization algorithm is proposed. Th...

Full description

Bibliographic Details
Main Authors: Xiaoya Zhang, Tao Sun, Lizhi Cheng
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2016/5053434
Description
Summary:We deal with a class of problems whose objective functions are compositions of nonconvex nonsmooth functions, which has a wide range of applications in signal/image processing. We introduce a new auxiliary variable, and an efficient general proximal alternating minimization algorithm is proposed. This method solves a class of nonconvex nonsmooth problems through alternating minimization. We give a brilliant systematic analysis to guarantee the convergence of the algorithm. Simulation results and the comparison with two other existing algorithms for 1D total variation denoising validate the efficiency of the proposed approach. The algorithm does contribute to the analysis and applications of a wide class of nonconvex nonsmooth problems.
ISSN:1024-123X
1563-5147