Fixed points and controllability in delay systems

<p/> <p>Schaefer's fixed point theorem is used to study the controllability in an infinite delay system <inline-formula><graphic file="1687-1812-2006-41480-i1.gif"/></inline-formula>. A compact map or homotopy is constructed enabling us to show that if th...

Full description

Bibliographic Details
Main Authors: Zhang Bo, Gao Hang
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2006/41480
id doaj-f7f98fea58bf42978652641d48b6602f
record_format Article
spelling doaj-f7f98fea58bf42978652641d48b6602f2020-11-25T01:08:07ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122006-01-012006141480Fixed points and controllability in delay systemsZhang BoGao Hang<p/> <p>Schaefer's fixed point theorem is used to study the controllability in an infinite delay system <inline-formula><graphic file="1687-1812-2006-41480-i1.gif"/></inline-formula>. A compact map or homotopy is constructed enabling us to show that if there is an <it>a priori</it> bound on all possible solutions of the companion control system <inline-formula><graphic file="1687-1812-2006-41480-i2.gif"/></inline-formula>, then there exists a solution for <inline-formula><graphic file="1687-1812-2006-41480-i3.gif"/></inline-formula>. The <it>a priori</it> bound is established by means of a Liapunov functional or applying an integral inequality. Applications to integral control systems are given to illustrate the approach.</p> http://www.fixedpointtheoryandapplications.com/content/2006/41480
collection DOAJ
language English
format Article
sources DOAJ
author Zhang Bo
Gao Hang
spellingShingle Zhang Bo
Gao Hang
Fixed points and controllability in delay systems
Fixed Point Theory and Applications
author_facet Zhang Bo
Gao Hang
author_sort Zhang Bo
title Fixed points and controllability in delay systems
title_short Fixed points and controllability in delay systems
title_full Fixed points and controllability in delay systems
title_fullStr Fixed points and controllability in delay systems
title_full_unstemmed Fixed points and controllability in delay systems
title_sort fixed points and controllability in delay systems
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2006-01-01
description <p/> <p>Schaefer's fixed point theorem is used to study the controllability in an infinite delay system <inline-formula><graphic file="1687-1812-2006-41480-i1.gif"/></inline-formula>. A compact map or homotopy is constructed enabling us to show that if there is an <it>a priori</it> bound on all possible solutions of the companion control system <inline-formula><graphic file="1687-1812-2006-41480-i2.gif"/></inline-formula>, then there exists a solution for <inline-formula><graphic file="1687-1812-2006-41480-i3.gif"/></inline-formula>. The <it>a priori</it> bound is established by means of a Liapunov functional or applying an integral inequality. Applications to integral control systems are given to illustrate the approach.</p>
url http://www.fixedpointtheoryandapplications.com/content/2006/41480
work_keys_str_mv AT zhangbo fixedpointsandcontrollabilityindelaysystems
AT gaohang fixedpointsandcontrollabilityindelaysystems
_version_ 1715847888736616448