Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar

<p>A method to distinguish cloud thermodynamic phase from polarized Micro Pulse Lidar (MPL) measurements is described. The method employs a simple enumerative approach to classify cloud layers as either liquid water, ice water, or mixed-phase clouds based on the linear volume depolarization ra...

Full description

Bibliographic Details
Main Authors: J. R. Lewis, J. R. Campbell, S. A. Stewart, I. Tan, E. J. Welton, S. Lolli
Format: Article
Language:English
Published: Copernicus Publications 2020-12-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/13/6901/2020/amt-13-6901-2020.pdf
id doaj-f7deeb1fbd6a4b8ab35e527587a29c4e
record_format Article
spelling doaj-f7deeb1fbd6a4b8ab35e527587a29c4e2020-12-18T14:11:08ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482020-12-01136901691310.5194/amt-13-6901-2020Determining cloud thermodynamic phase from the polarized Micro Pulse LidarJ. R. Lewis0J. R. Lewis1J. R. Campbell2S. A. Stewart3I. Tan4E. J. Welton5S. Lolli6Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, Maryland, USANASA Goddard Space Flight Center, Greenbelt, Maryland, USANaval Research Laboratory, Monterey, California, USAScience Systems and Applications, Inc., Lanham, Maryland, USAMcGill University, Montreal, Quebec, CanadaNASA Goddard Space Flight Center, Greenbelt, Maryland, USACNR-IMAA, Istituto di Metodologie per l'Analisi Ambientale, Tito Scalo, Italy<p>A method to distinguish cloud thermodynamic phase from polarized Micro Pulse Lidar (MPL) measurements is described. The method employs a simple enumerative approach to classify cloud layers as either liquid water, ice water, or mixed-phase clouds based on the linear volume depolarization ratio and cloud top temperatures derived from Goddard Earth Observing System, version 5 (GEOS-5), assimilated data. Two years of cloud retrievals from the Micro Pulse Lidar Network (MPLNET) site in Greenbelt, MD, are used to evaluate the performance of the algorithm. The fraction of supercooled liquid water in the mixed-phase temperature regime (<span class="inline-formula">−37</span>–0 <span class="inline-formula"><sup>∘</sup></span>C) calculated using MPLNET data is compared to similar calculations made using the spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, with reasonable consistency.</p>https://amt.copernicus.org/articles/13/6901/2020/amt-13-6901-2020.pdf
collection DOAJ
language English
format Article
sources DOAJ
author J. R. Lewis
J. R. Lewis
J. R. Campbell
S. A. Stewart
I. Tan
E. J. Welton
S. Lolli
spellingShingle J. R. Lewis
J. R. Lewis
J. R. Campbell
S. A. Stewart
I. Tan
E. J. Welton
S. Lolli
Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
Atmospheric Measurement Techniques
author_facet J. R. Lewis
J. R. Lewis
J. R. Campbell
S. A. Stewart
I. Tan
E. J. Welton
S. Lolli
author_sort J. R. Lewis
title Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
title_short Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
title_full Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
title_fullStr Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
title_full_unstemmed Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
title_sort determining cloud thermodynamic phase from the polarized micro pulse lidar
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2020-12-01
description <p>A method to distinguish cloud thermodynamic phase from polarized Micro Pulse Lidar (MPL) measurements is described. The method employs a simple enumerative approach to classify cloud layers as either liquid water, ice water, or mixed-phase clouds based on the linear volume depolarization ratio and cloud top temperatures derived from Goddard Earth Observing System, version 5 (GEOS-5), assimilated data. Two years of cloud retrievals from the Micro Pulse Lidar Network (MPLNET) site in Greenbelt, MD, are used to evaluate the performance of the algorithm. The fraction of supercooled liquid water in the mixed-phase temperature regime (<span class="inline-formula">−37</span>–0 <span class="inline-formula"><sup>∘</sup></span>C) calculated using MPLNET data is compared to similar calculations made using the spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, with reasonable consistency.</p>
url https://amt.copernicus.org/articles/13/6901/2020/amt-13-6901-2020.pdf
work_keys_str_mv AT jrlewis determiningcloudthermodynamicphasefromthepolarizedmicropulselidar
AT jrlewis determiningcloudthermodynamicphasefromthepolarizedmicropulselidar
AT jrcampbell determiningcloudthermodynamicphasefromthepolarizedmicropulselidar
AT sastewart determiningcloudthermodynamicphasefromthepolarizedmicropulselidar
AT itan determiningcloudthermodynamicphasefromthepolarizedmicropulselidar
AT ejwelton determiningcloudthermodynamicphasefromthepolarizedmicropulselidar
AT slolli determiningcloudthermodynamicphasefromthepolarizedmicropulselidar
_version_ 1724378411832442880