Bifurcation Analysis and Spatiotemporal Patterns of Nonlinear Oscillations in a Ring Lattice of Identical Neurons with Delayed Coupling
We investigate the dynamics of a delayed neural network model consisting of n identical neurons. We first analyze stability of the zero solution and then study the effect of time delay on the dynamics of the system. We also investigate the steady state bifurcations and their stability. The direction...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/368652 |
Summary: | We investigate the dynamics of a delayed neural network model consisting of n identical neurons. We first analyze stability of the zero solution and then study the effect of time delay on the dynamics of the system. We also investigate the steady state bifurcations and their stability. The direction and stability of the Hopf bifurcation and the pitchfork bifurcation are analyzed by using the derived normal forms on center manifolds. Then, the spatiotemporal patterns of bifurcating periodic solutions are investigated by using the symmetric bifurcation theory, Lie group theory and S1-equivariant degree theory. Finally, two neural network models with four or seven neurons are used to verify our theoretical results. |
---|---|
ISSN: | 1085-3375 1687-0409 |