Stick, partial slip and sliding in the plane strain micro contact of two elastic bodies

The plane strain problem of a curved elastic body pressed against an elastic half-space is considered. The effect of adhesion is included through the use of surface energy in a manner similar to the well-known JKR theory for spherical contacts. The compressive normal force is held constant while a t...

Full description

Bibliographic Details
Main Author: George G. Adams
Format: Article
Language:English
Published: The Royal Society 2014-01-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.140363
Description
Summary:The plane strain problem of a curved elastic body pressed against an elastic half-space is considered. The effect of adhesion is included through the use of surface energy in a manner similar to the well-known JKR theory for spherical contacts. The compressive normal force is held constant while a tangential force is gradually increased from zero. The contact is characterized by complete stick up to a critical value of the tangential force when there is a transition either directly to complete sliding or to a partial slip state in which a central stick region is surrounded by two slip regions. In the latter case, at a finite value of the stick zone width, a second critical condition exists at which there is a transition from partial slip to complete sliding. This behaviour is determined for a range of dimensionless values of the work of adhesion, the assumed constant shear stress during slip/sliding and the initial compressive load.
ISSN:2054-5703