MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY
This paper represents a survey of recent advances in modeling of space or space-time Gaussian Random Fields (GRF), tools of Geostatistics at hand for the understanding of special cases of noise in image analysis. They can be used when stationarity or isotropy are unrealistic assumptions, or even whe...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Slovenian Society for Stereology and Quantitative Image Analysis
2014-03-01
|
Series: | Image Analysis and Stereology |
Subjects: | |
Online Access: | http://www.ias-iss.org/ojs/IAS/article/view/1077 |
id |
doaj-f7ab87190c7c4befa1acf70669845640 |
---|---|
record_format |
Article |
spelling |
doaj-f7ab87190c7c4befa1acf706698456402020-11-25T00:43:15ZengSlovenian Society for Stereology and Quantitative Image AnalysisImage Analysis and Stereology1580-31391854-51652014-03-01331758110.5566/ias.v33.p75-81905MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITYPablo Gregori0Emilio Porcu1Jorge Mateu2Instituto Universitario de Matemáticas y Aplicaciones de Castellón, Departamento de Matemáticas, Universitat Jaume I de CastellónUniversidad Federico Santa María Departamento de Matemáticas ValparaísoInstituto Universitario de Matemáticas y Aplicaciones de Castellón, Departamento de Matemáticas, Universitat Jaume I de CastellónThis paper represents a survey of recent advances in modeling of space or space-time Gaussian Random Fields (GRF), tools of Geostatistics at hand for the understanding of special cases of noise in image analysis. They can be used when stationarity or isotropy are unrealistic assumptions, or even when negative covariance between some couples of locations are evident. We show some strategies in order to escape from these restrictions, on the basis of rich classes of well known stationary or isotropic non negative covariance models, and through suitable operations, like linear combinations, generalized means, or with particular Fourier transforms.http://www.ias-iss.org/ojs/IAS/article/view/1077anisotropycovariance modelGaussian random fieldnon negativitynon stationarity |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Pablo Gregori Emilio Porcu Jorge Mateu |
spellingShingle |
Pablo Gregori Emilio Porcu Jorge Mateu MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY Image Analysis and Stereology anisotropy covariance model Gaussian random field non negativity non stationarity |
author_facet |
Pablo Gregori Emilio Porcu Jorge Mateu |
author_sort |
Pablo Gregori |
title |
MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY |
title_short |
MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY |
title_full |
MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY |
title_fullStr |
MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY |
title_full_unstemmed |
MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY |
title_sort |
models of covariance functions of gaussian random fields escaping from isotropy, stationarity and non negativity |
publisher |
Slovenian Society for Stereology and Quantitative Image Analysis |
series |
Image Analysis and Stereology |
issn |
1580-3139 1854-5165 |
publishDate |
2014-03-01 |
description |
This paper represents a survey of recent advances in modeling of space or space-time Gaussian Random Fields (GRF), tools of Geostatistics at hand for the understanding of special cases of noise in image analysis. They can be used when stationarity or isotropy are unrealistic assumptions, or even when negative covariance between some couples of locations are evident. We show some strategies in order to escape from these restrictions, on the basis of rich classes of well known stationary or isotropic non negative covariance models, and through suitable operations, like linear combinations, generalized means, or with particular Fourier transforms. |
topic |
anisotropy covariance model Gaussian random field non negativity non stationarity |
url |
http://www.ias-iss.org/ojs/IAS/article/view/1077 |
work_keys_str_mv |
AT pablogregori modelsofcovariancefunctionsofgaussianrandomfieldsescapingfromisotropystationarityandnonnegativity AT emilioporcu modelsofcovariancefunctionsofgaussianrandomfieldsescapingfromisotropystationarityandnonnegativity AT jorgemateu modelsofcovariancefunctionsofgaussianrandomfieldsescapingfromisotropystationarityandnonnegativity |
_version_ |
1725279461573656576 |