MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY

This paper represents a survey of recent advances in modeling of space or space-time Gaussian Random Fields (GRF), tools of Geostatistics at hand for the understanding of special cases of noise in image analysis. They can be used when stationarity or isotropy are unrealistic assumptions, or even whe...

Full description

Bibliographic Details
Main Authors: Pablo Gregori, Emilio Porcu, Jorge Mateu
Format: Article
Language:English
Published: Slovenian Society for Stereology and Quantitative Image Analysis 2014-03-01
Series:Image Analysis and Stereology
Subjects:
Online Access:http://www.ias-iss.org/ojs/IAS/article/view/1077
id doaj-f7ab87190c7c4befa1acf70669845640
record_format Article
spelling doaj-f7ab87190c7c4befa1acf706698456402020-11-25T00:43:15ZengSlovenian Society for Stereology and Quantitative Image AnalysisImage Analysis and Stereology1580-31391854-51652014-03-01331758110.5566/ias.v33.p75-81905MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITYPablo Gregori0Emilio Porcu1Jorge Mateu2Instituto Universitario de Matemáticas y Aplicaciones de Castellón, Departamento de Matemáticas, Universitat Jaume I de CastellónUniversidad Federico Santa María Departamento de Matemáticas ValparaísoInstituto Universitario de Matemáticas y Aplicaciones de Castellón, Departamento de Matemáticas, Universitat Jaume I de CastellónThis paper represents a survey of recent advances in modeling of space or space-time Gaussian Random Fields (GRF), tools of Geostatistics at hand for the understanding of special cases of noise in image analysis. They can be used when stationarity or isotropy are unrealistic assumptions, or even when negative covariance between some couples of locations are evident. We show some strategies in order to escape from these restrictions, on the basis of rich classes of well known stationary or isotropic non negative covariance models, and through suitable operations, like linear combinations, generalized means, or with particular Fourier transforms.http://www.ias-iss.org/ojs/IAS/article/view/1077anisotropycovariance modelGaussian random fieldnon negativitynon stationarity
collection DOAJ
language English
format Article
sources DOAJ
author Pablo Gregori
Emilio Porcu
Jorge Mateu
spellingShingle Pablo Gregori
Emilio Porcu
Jorge Mateu
MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY
Image Analysis and Stereology
anisotropy
covariance model
Gaussian random field
non negativity
non stationarity
author_facet Pablo Gregori
Emilio Porcu
Jorge Mateu
author_sort Pablo Gregori
title MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY
title_short MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY
title_full MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY
title_fullStr MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY
title_full_unstemmed MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY
title_sort models of covariance functions of gaussian random fields escaping from isotropy, stationarity and non negativity
publisher Slovenian Society for Stereology and Quantitative Image Analysis
series Image Analysis and Stereology
issn 1580-3139
1854-5165
publishDate 2014-03-01
description This paper represents a survey of recent advances in modeling of space or space-time Gaussian Random Fields (GRF), tools of Geostatistics at hand for the understanding of special cases of noise in image analysis. They can be used when stationarity or isotropy are unrealistic assumptions, or even when negative covariance between some couples of locations are evident. We show some strategies in order to escape from these restrictions, on the basis of rich classes of well known stationary or isotropic non negative covariance models, and through suitable operations, like linear combinations, generalized means, or with particular Fourier transforms.
topic anisotropy
covariance model
Gaussian random field
non negativity
non stationarity
url http://www.ias-iss.org/ojs/IAS/article/view/1077
work_keys_str_mv AT pablogregori modelsofcovariancefunctionsofgaussianrandomfieldsescapingfromisotropystationarityandnonnegativity
AT emilioporcu modelsofcovariancefunctionsofgaussianrandomfieldsescapingfromisotropystationarityandnonnegativity
AT jorgemateu modelsofcovariancefunctionsofgaussianrandomfieldsescapingfromisotropystationarityandnonnegativity
_version_ 1725279461573656576