Computation of eigenvalues of fractional Sturm–Liouville problems

We consider the eigenvalues of the fractional-order Sturm--Liouville equation of the form \begin{equation*} -{}^{c}D_{0^+}^{\alpha}\circ D_{0^+}^{\alpha} y(t)+q(t)y(t)=\lambda y(t),\quad 0<\alpha\leq 1,\quad t\in[0,1], \end{equation*} with Dirichlet boundary conditions $$I_{0^+}^{1-\alpha}y(t)\v...

Full description

Bibliographic Details
Main Authors: E.M. Maralani, F.D. Saei, A.A.J. Akbarfam, K. Ghanbari
Format: Article
Language:English
Published: Ferdowsi University of Mashhad 2021-03-01
Series:Iranian Journal of Numerical Analysis and Optimization
Subjects:
Online Access:https://ijnao.um.ac.ir/article_39622_986a1d19d921e33a18083f766e24c2b7.pdf
Description
Summary:We consider the eigenvalues of the fractional-order Sturm--Liouville equation of the form \begin{equation*} -{}^{c}D_{0^+}^{\alpha}\circ D_{0^+}^{\alpha} y(t)+q(t)y(t)=\lambda y(t),\quad 0<\alpha\leq 1,\quad t\in[0,1], \end{equation*} with Dirichlet boundary conditions $$I_{0^+}^{1-\alpha}y(t)\vert_{t=0}=0\quad\mbox{and}\quad I_{0^+}^{1-\alpha}y(t)\vert_{t=1}=0,$$ where $q\in L^2(0,1)$ is a real-valued potential function. The method is used based on a Picard's iterative procedure. We show that the eigenvalues are obtained from the zeros of the Mittag-Leffler function and its derivatives.
ISSN:2423-6977
2423-6969