Degradation of Organic Pollutant in Waste Water via CdMoO4 Nanostructures as an Effective Photocatalyst; Ultrasound-assisted Preparation and Characterization

Sphere-like cadmium molybdate (CdMoO4) nanostructures have been synthesized by a large scale and simple sonochemical method by using Cd(Sal)2 (Sal=salicylidene) and Na2MoO4.2H2O for the first time. The effects of sonochemical irradiation time, sonochemical power, temperature, solvent, surfactant and...

Full description

Bibliographic Details
Main Author: Mahshid Golestaneh
Format: Article
Language:English
Published: Nanoscience and Nanotechnology Research Center, University of Kashan 2019-10-01
Series:Journal of Nanostructures
Subjects:
Online Access:http://jns.kashanu.ac.ir/article_81356_6690b7e8a5c8eb670c3d1e1aab9055b2.pdf
Description
Summary:Sphere-like cadmium molybdate (CdMoO4) nanostructures have been synthesized by a large scale and simple sonochemical method by using Cd(Sal)2 (Sal=salicylidene) and Na2MoO4.2H2O for the first time. The effects of sonochemical irradiation time, sonochemical power, temperature, solvent, surfactant and cadmium source were considered to obtain a controlled shape. The as-prepared nanostructured cadmium molybdate was analyzed by UV–Vis diffuse reflectance spectroscopy (DRS), energy dispersive X-ray microanalysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). It was established that morphology, particle size and phase composition of the final products could be greatly affected by these parameters. The photocatalytic activity of the synthesized products has been compared for the photo- degradation activity of methylene blue (MB). The distinguished degradation activity of cadmium molybdate photocatalyst can be ascribed to the powerful UV light absorption, excellent charge separation efficiency, nice particle size distribution and proper band gap of the nanostructures.
ISSN:2251-7871
2251-788X