Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub>

In view of the wide application of resistance distance, the computation of resistance distance in various graphs becomes one of the main topics. In this paper, we aim to compute resistance distance in <i>H</i>-join of graphs <inline-formula> <math display="inline">...

Full description

Bibliographic Details
Main Authors: Li Zhang, Jing Zhao, Jia-Bao Liu, Micheal Arockiaraj
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/6/12/283
id doaj-f77f44e2781c437f9c8fa60328e37f3c
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Li Zhang
Jing Zhao
Jia-Bao Liu
Micheal Arockiaraj
spellingShingle Li Zhang
Jing Zhao
Jia-Bao Liu
Micheal Arockiaraj
Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub>
Mathematics
graph
Laplacian matrix
resistance distance
group inverse
author_facet Li Zhang
Jing Zhao
Jia-Bao Liu
Micheal Arockiaraj
author_sort Li Zhang
title Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub>
title_short Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub>
title_full Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub>
title_fullStr Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub>
title_full_unstemmed Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub>
title_sort resistance distance in <i>h</i>-join of graphs <i>g</i><sub>1</sub>,<i>g</i><sub>2</sub>,<i>…</i>,<i>g</i><sub>k</sub>
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2018-11-01
description In view of the wide application of resistance distance, the computation of resistance distance in various graphs becomes one of the main topics. In this paper, we aim to compute resistance distance in <i>H</i>-join of graphs <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula>. Recall that <i>H</i> is an arbitrary graph with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>V</mi> <mo>(</mo> <mi>H</mi> <mo>)</mo> <mo>=</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <mi>k</mi> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula> are disjoint graphs. Then, the <i>H</i>-join of graphs <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula>, denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, is a graph formed by taking <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula> and joining every vertex of <inline-formula> <math display="inline"> <semantics> <msub> <mi>G</mi> <mi>i</mi> </msub> </semantics> </math> </inline-formula> to every vertex of <inline-formula> <math display="inline"> <semantics> <msub> <mi>G</mi> <mi>j</mi> </msub> </semantics> </math> </inline-formula> whenever <i>i</i> is adjacent to <i>j</i> in <i>H</i>. Here, we first give the Laplacian matrix of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, and then give a <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>-inverse <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <msup> <mrow> <mo>(</mo> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>{</mo> <mn>1</mn> <mo>}</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> or group inverse <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <msup> <mrow> <mo>(</mo> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> <mo>)</mo> </mrow> <mo>#</mo> </msup> </mrow> </semantics> </math> </inline-formula> of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>(</mo> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. It is well know that, there exists a relationship between resistance distance and entries of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>-inverse or group inverse. Therefore, we can easily obtain resistance distance in <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. In addition, some applications are presented in this paper.
topic graph
Laplacian matrix
resistance distance
group inverse
url https://www.mdpi.com/2227-7390/6/12/283
work_keys_str_mv AT lizhang resistancedistanceinihijoinofgraphsigisub1subigisub2subiiigisubksub
AT jingzhao resistancedistanceinihijoinofgraphsigisub1subigisub2subiiigisubksub
AT jiabaoliu resistancedistanceinihijoinofgraphsigisub1subigisub2subiiigisubksub
AT michealarockiaraj resistancedistanceinihijoinofgraphsigisub1subigisub2subiiigisubksub
_version_ 1725290139644592128
spelling doaj-f77f44e2781c437f9c8fa60328e37f3c2020-11-25T00:40:27ZengMDPI AGMathematics2227-73902018-11-0161228310.3390/math6120283math6120283Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub>Li Zhang0Jing Zhao1Jia-Bao Liu2Micheal Arockiaraj3School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, ChinaSchool of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, ChinaSchool of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, ChinaDepartment of Mathematics, Loyola College, Chennai 600034, IndiaIn view of the wide application of resistance distance, the computation of resistance distance in various graphs becomes one of the main topics. In this paper, we aim to compute resistance distance in <i>H</i>-join of graphs <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula>. Recall that <i>H</i> is an arbitrary graph with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>V</mi> <mo>(</mo> <mi>H</mi> <mo>)</mo> <mo>=</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <mi>k</mi> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula> are disjoint graphs. Then, the <i>H</i>-join of graphs <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula>, denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, is a graph formed by taking <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula> and joining every vertex of <inline-formula> <math display="inline"> <semantics> <msub> <mi>G</mi> <mi>i</mi> </msub> </semantics> </math> </inline-formula> to every vertex of <inline-formula> <math display="inline"> <semantics> <msub> <mi>G</mi> <mi>j</mi> </msub> </semantics> </math> </inline-formula> whenever <i>i</i> is adjacent to <i>j</i> in <i>H</i>. Here, we first give the Laplacian matrix of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, and then give a <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>-inverse <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <msup> <mrow> <mo>(</mo> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>{</mo> <mn>1</mn> <mo>}</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> or group inverse <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <msup> <mrow> <mo>(</mo> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> <mo>)</mo> </mrow> <mo>#</mo> </msup> </mrow> </semantics> </math> </inline-formula> of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>(</mo> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. It is well know that, there exists a relationship between resistance distance and entries of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>-inverse or group inverse. Therefore, we can easily obtain resistance distance in <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. In addition, some applications are presented in this paper.https://www.mdpi.com/2227-7390/6/12/283graphLaplacian matrixresistance distancegroup inverse