Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub>
In view of the wide application of resistance distance, the computation of resistance distance in various graphs becomes one of the main topics. In this paper, we aim to compute resistance distance in <i>H</i>-join of graphs <inline-formula> <math display="inline">...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-11-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/6/12/283 |
id |
doaj-f77f44e2781c437f9c8fa60328e37f3c |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Li Zhang Jing Zhao Jia-Bao Liu Micheal Arockiaraj |
spellingShingle |
Li Zhang Jing Zhao Jia-Bao Liu Micheal Arockiaraj Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub> Mathematics graph Laplacian matrix resistance distance group inverse |
author_facet |
Li Zhang Jing Zhao Jia-Bao Liu Micheal Arockiaraj |
author_sort |
Li Zhang |
title |
Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub> |
title_short |
Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub> |
title_full |
Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub> |
title_fullStr |
Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub> |
title_full_unstemmed |
Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub> |
title_sort |
resistance distance in <i>h</i>-join of graphs <i>g</i><sub>1</sub>,<i>g</i><sub>2</sub>,<i>…</i>,<i>g</i><sub>k</sub> |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2018-11-01 |
description |
In view of the wide application of resistance distance, the computation of resistance distance in various graphs becomes one of the main topics. In this paper, we aim to compute resistance distance in <i>H</i>-join of graphs <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula>. Recall that <i>H</i> is an arbitrary graph with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>V</mi> <mo>(</mo> <mi>H</mi> <mo>)</mo> <mo>=</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>k</mi> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula> are disjoint graphs. Then, the <i>H</i>-join of graphs <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula>, denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, is a graph formed by taking <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula> and joining every vertex of <inline-formula> <math display="inline"> <semantics> <msub> <mi>G</mi> <mi>i</mi> </msub> </semantics> </math> </inline-formula> to every vertex of <inline-formula> <math display="inline"> <semantics> <msub> <mi>G</mi> <mi>j</mi> </msub> </semantics> </math> </inline-formula> whenever <i>i</i> is adjacent to <i>j</i> in <i>H</i>. Here, we first give the Laplacian matrix of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, and then give a <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>-inverse <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <msup> <mrow> <mo>(</mo> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>{</mo> <mn>1</mn> <mo>}</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> or group inverse <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <msup> <mrow> <mo>(</mo> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> <mo>)</mo> </mrow> <mo>#</mo> </msup> </mrow> </semantics> </math> </inline-formula> of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>(</mo> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. It is well know that, there exists a relationship between resistance distance and entries of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>-inverse or group inverse. Therefore, we can easily obtain resistance distance in <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. In addition, some applications are presented in this paper. |
topic |
graph Laplacian matrix resistance distance group inverse |
url |
https://www.mdpi.com/2227-7390/6/12/283 |
work_keys_str_mv |
AT lizhang resistancedistanceinihijoinofgraphsigisub1subigisub2subiiigisubksub AT jingzhao resistancedistanceinihijoinofgraphsigisub1subigisub2subiiigisubksub AT jiabaoliu resistancedistanceinihijoinofgraphsigisub1subigisub2subiiigisubksub AT michealarockiaraj resistancedistanceinihijoinofgraphsigisub1subigisub2subiiigisubksub |
_version_ |
1725290139644592128 |
spelling |
doaj-f77f44e2781c437f9c8fa60328e37f3c2020-11-25T00:40:27ZengMDPI AGMathematics2227-73902018-11-0161228310.3390/math6120283math6120283Resistance Distance in <i>H</i>-Join of Graphs <i>G</i><sub>1</sub>,<i>G</i><sub>2</sub>,<i>…</i>,<i>G</i><sub>k</sub>Li Zhang0Jing Zhao1Jia-Bao Liu2Micheal Arockiaraj3School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, ChinaSchool of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, ChinaSchool of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, ChinaDepartment of Mathematics, Loyola College, Chennai 600034, IndiaIn view of the wide application of resistance distance, the computation of resistance distance in various graphs becomes one of the main topics. In this paper, we aim to compute resistance distance in <i>H</i>-join of graphs <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula>. Recall that <i>H</i> is an arbitrary graph with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>V</mi> <mo>(</mo> <mi>H</mi> <mo>)</mo> <mo>=</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>k</mi> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula> are disjoint graphs. Then, the <i>H</i>-join of graphs <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula>, denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, is a graph formed by taking <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula> and joining every vertex of <inline-formula> <math display="inline"> <semantics> <msub> <mi>G</mi> <mi>i</mi> </msub> </semantics> </math> </inline-formula> to every vertex of <inline-formula> <math display="inline"> <semantics> <msub> <mi>G</mi> <mi>j</mi> </msub> </semantics> </math> </inline-formula> whenever <i>i</i> is adjacent to <i>j</i> in <i>H</i>. Here, we first give the Laplacian matrix of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, and then give a <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>-inverse <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <msup> <mrow> <mo>(</mo> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>{</mo> <mn>1</mn> <mo>}</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> or group inverse <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <msup> <mrow> <mo>(</mo> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> <mo>)</mo> </mrow> <mo>#</mo> </msup> </mrow> </semantics> </math> </inline-formula> of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>(</mo> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. It is well know that, there exists a relationship between resistance distance and entries of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>-inverse or group inverse. Therefore, we can easily obtain resistance distance in <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⋁</mo> <mi>H</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>G</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. In addition, some applications are presented in this paper.https://www.mdpi.com/2227-7390/6/12/283graphLaplacian matrixresistance distancegroup inverse |