Prolonged Exposure of CBA/Ca Mice to Moderately Loud Noise Can Cause Cochlear Synaptopathy but Not Tinnitus or Hyperacusis as Assessed With the Acoustic Startle Reflex

Hearing loss changes the auditory brain, sometimes maladaptively. When deprived of cochlear input, central auditory neurons become more active spontaneously and begin to respond more strongly and synchronously to better preserved sound frequencies. This spontaneous and sound-evoked central hyperacti...

Full description

Bibliographic Details
Main Author: Martin Pienkowski
Format: Article
Language:English
Published: SAGE Publishing 2018-03-01
Series:Trends in Hearing
Online Access:https://doi.org/10.1177/2331216518758109
id doaj-f76c1bc3230141dba36c526132aa2d1e
record_format Article
spelling doaj-f76c1bc3230141dba36c526132aa2d1e2020-11-25T02:59:36ZengSAGE PublishingTrends in Hearing2331-21652018-03-012210.1177/2331216518758109Prolonged Exposure of CBA/Ca Mice to Moderately Loud Noise Can Cause Cochlear Synaptopathy but Not Tinnitus or Hyperacusis as Assessed With the Acoustic Startle ReflexMartin PienkowskiHearing loss changes the auditory brain, sometimes maladaptively. When deprived of cochlear input, central auditory neurons become more active spontaneously and begin to respond more strongly and synchronously to better preserved sound frequencies. This spontaneous and sound-evoked central hyperactivity has been postulated to trigger tinnitus and hyperacusis, respectively. Localized hyperactivity has also been observed after long-term exposure to noise levels that do not damage the cochlea. Adult animals exposed to bands of nondamaging noise exhibited suppressed spontaneous and sound-evoked activity in the area of primary auditory cortex (A1) stimulated by the exposure band but had increased spontaneous and evoked activity in neighboring A1 areas. We hypothesized that the cortically suppressed frequencies should for some time after exposure be perceived as less loud than before (hypoacusis), whereas the hyperactivity outside of the exposure band might lead to frequency-specific hyperacusis or tinnitus. To investigate this, adult CBA/Ca mice were exposed for >2 months to 8 to 16 kHz noise at 70 or 75 dB sound pressure level and tested for hypo-/hyperacusis and tinnitus using tone and gap prepulse inhibition of the acoustic startle reflex. Auditory brainstem responses and distortion product otoacoustic emissions showed evidence of cochlear synaptopathy after exposure at 75 but not 70 dB, putting a lower bound on damaging noise levels for CBA/Ca mice. Contrary to hypothesis, neither exposure significantly shifted startle results from baseline. These negative findings nevertheless have implications for startle test methodology and for the putative role of central hyperactivity in hyperacusis and tinnitus.https://doi.org/10.1177/2331216518758109
collection DOAJ
language English
format Article
sources DOAJ
author Martin Pienkowski
spellingShingle Martin Pienkowski
Prolonged Exposure of CBA/Ca Mice to Moderately Loud Noise Can Cause Cochlear Synaptopathy but Not Tinnitus or Hyperacusis as Assessed With the Acoustic Startle Reflex
Trends in Hearing
author_facet Martin Pienkowski
author_sort Martin Pienkowski
title Prolonged Exposure of CBA/Ca Mice to Moderately Loud Noise Can Cause Cochlear Synaptopathy but Not Tinnitus or Hyperacusis as Assessed With the Acoustic Startle Reflex
title_short Prolonged Exposure of CBA/Ca Mice to Moderately Loud Noise Can Cause Cochlear Synaptopathy but Not Tinnitus or Hyperacusis as Assessed With the Acoustic Startle Reflex
title_full Prolonged Exposure of CBA/Ca Mice to Moderately Loud Noise Can Cause Cochlear Synaptopathy but Not Tinnitus or Hyperacusis as Assessed With the Acoustic Startle Reflex
title_fullStr Prolonged Exposure of CBA/Ca Mice to Moderately Loud Noise Can Cause Cochlear Synaptopathy but Not Tinnitus or Hyperacusis as Assessed With the Acoustic Startle Reflex
title_full_unstemmed Prolonged Exposure of CBA/Ca Mice to Moderately Loud Noise Can Cause Cochlear Synaptopathy but Not Tinnitus or Hyperacusis as Assessed With the Acoustic Startle Reflex
title_sort prolonged exposure of cba/ca mice to moderately loud noise can cause cochlear synaptopathy but not tinnitus or hyperacusis as assessed with the acoustic startle reflex
publisher SAGE Publishing
series Trends in Hearing
issn 2331-2165
publishDate 2018-03-01
description Hearing loss changes the auditory brain, sometimes maladaptively. When deprived of cochlear input, central auditory neurons become more active spontaneously and begin to respond more strongly and synchronously to better preserved sound frequencies. This spontaneous and sound-evoked central hyperactivity has been postulated to trigger tinnitus and hyperacusis, respectively. Localized hyperactivity has also been observed after long-term exposure to noise levels that do not damage the cochlea. Adult animals exposed to bands of nondamaging noise exhibited suppressed spontaneous and sound-evoked activity in the area of primary auditory cortex (A1) stimulated by the exposure band but had increased spontaneous and evoked activity in neighboring A1 areas. We hypothesized that the cortically suppressed frequencies should for some time after exposure be perceived as less loud than before (hypoacusis), whereas the hyperactivity outside of the exposure band might lead to frequency-specific hyperacusis or tinnitus. To investigate this, adult CBA/Ca mice were exposed for >2 months to 8 to 16 kHz noise at 70 or 75 dB sound pressure level and tested for hypo-/hyperacusis and tinnitus using tone and gap prepulse inhibition of the acoustic startle reflex. Auditory brainstem responses and distortion product otoacoustic emissions showed evidence of cochlear synaptopathy after exposure at 75 but not 70 dB, putting a lower bound on damaging noise levels for CBA/Ca mice. Contrary to hypothesis, neither exposure significantly shifted startle results from baseline. These negative findings nevertheless have implications for startle test methodology and for the putative role of central hyperactivity in hyperacusis and tinnitus.
url https://doi.org/10.1177/2331216518758109
work_keys_str_mv AT martinpienkowski prolongedexposureofcbacamicetomoderatelyloudnoisecancausecochlearsynaptopathybutnottinnitusorhyperacusisasassessedwiththeacousticstartlereflex
_version_ 1724701449446752256