Existence of Random Attractors for a p-Laplacian-Type Equation with Additive Noise

We first establish the existence and uniqueness of a solution for a stochastic p-Laplacian-type equation with additive white noise and show that the unique solution generates a stochastic dynamical system. By using the Dirichlet forms of Laplacian and an approximation procedure, the nonlinear obstac...

Full description

Bibliographic Details
Main Authors: Wenqiang Zhao, Yangrong Li
Format: Article
Language:English
Published: Hindawi Limited 2011-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2011/616451
Description
Summary:We first establish the existence and uniqueness of a solution for a stochastic p-Laplacian-type equation with additive white noise and show that the unique solution generates a stochastic dynamical system. By using the Dirichlet forms of Laplacian and an approximation procedure, the nonlinear obstacle, arising from the additive noise is overcome when we make energy estimate. Then, we obtain a random attractor for this stochastic dynamical system. Finally, under a restrictive assumption on the monotonicity coefficient, we find that the random attractor consists of a single point, and therefore the system possesses a unique stationary solution.
ISSN:1085-3375
1687-0409