Low frequency of a deforming capillary vibration, part 1: Mathematical model
The capillary effect has wide applications from biology and textile engineering to nanotechnology especially the micro-electromechanical systems and microfluidics device. The capillary vibration significantly affects its mass transmission. This paper establishes a nonlinear oscillator of a deforming...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2019-12-01
|
Series: | Journal of Low Frequency Noise, Vibration and Active Control |
Online Access: | https://doi.org/10.1177/1461348419856227 |
Summary: | The capillary effect has wide applications from biology and textile engineering to nanotechnology especially the micro-electromechanical systems and microfluidics device. The capillary vibration significantly affects its mass transmission. This paper establishes a nonlinear oscillator of a deforming capillary tube. The geometric potential theory is used to estimate the capillary force. The paper reveals that the low-frequency property of capillary vibration plays an important role not only in life but also engineering applications. |
---|---|
ISSN: | 1461-3484 2048-4046 |