Multilinear Discriminative Spatial Patterns for Movement-Related Cortical Potential Based on EEG Classification with Tensor Representation
The discriminative spatial patterns (DSP) algorithm is a classical and effective feature extraction technique for decoding of voluntary finger premovements from electroencephalography (EEG). As a purely data-driven subspace learning algorithm, DSP essentially is a spatial-domain filter and does not...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Computational Intelligence and Neuroscience |
Online Access: | http://dx.doi.org/10.1155/2021/6634672 |
Summary: | The discriminative spatial patterns (DSP) algorithm is a classical and effective feature extraction technique for decoding of voluntary finger premovements from electroencephalography (EEG). As a purely data-driven subspace learning algorithm, DSP essentially is a spatial-domain filter and does not make full use of the information in frequency domain. The paper presents multilinear discriminative spatial patterns (MDSP) to derive multiple interrelated lower dimensional discriminative subspaces of low frequency movement-related cortical potential (MRCP). Experimental results on two finger movement tasks’ EEG datasets demonstrate the effectiveness of the proposed MDSP method. |
---|---|
ISSN: | 1687-5273 |