Measuring land losses caused by water erosion using the SWAT model in the Ourika watershed in the High Atlas of Morocco

In Morocco, the phenomena of water erosion cause significant economic losses mainly linked to the silting up of dams, the degradation of equipment and socio-economic infrastructures, the loss of soil productivity and the insecurity of the population. The SWAT (Soil and Water Assessment Tool) model w...

Full description

Bibliographic Details
Main Authors: Elmalki Meysara, Mounir Fouad, Ichen Abdellah, Qaini Taoufiq, Khai Thami, Aarab Mohammed
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/10/e3sconf_icies2020_00083.pdf
Description
Summary:In Morocco, the phenomena of water erosion cause significant economic losses mainly linked to the silting up of dams, the degradation of equipment and socio-economic infrastructures, the loss of soil productivity and the insecurity of the population. The SWAT (Soil and Water Assessment Tool) model was used to estimate the quantities of sediments generated by the various erosive processes at the level of the Ourika watershed. The SWAT modeling, which is done with daily time steps, used as basic data; a Digital Elevation Model GDEM-ASTER (Global Digital Elevation-Advanced Space borne Thermal Emission and Reflection Radiometer) with 30 m of resolution, a land cover map developed from the Landsat 8 OLI (Operational Land Imager) satellite image of 2017 with 30 m of resolution and a soil map published by FAO (Harmonized World Soil Database). Also, daily meteorological data from the Tensift Water Basin Agency over a period from 1992 to 2001 were used. The results obtained showed that soil losses due to water erosion in the Ourika watershed reached an average of 9.18 t.ha-1.year-1. The model was calibrated and validated using the SWAT-CUP (SWAT Calibration and Uncertainty Procedures) software SUFI-2 (Sequential Uncertainty Fitting) and after several simulations and iterations a determination coefficient R2 of 0.76 was obtained.
ISSN:2267-1242