Summary: | <h4>Background</h4>Clinical studies demonstrate that the N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine, induces rapid antidepressant effects in patients with refractive major depressive disorder and bipolar depression. This rapid onset of action makes ketamine a highly attractive drug for patients, particularly those who do not typically respond to therapy. A recent study suggested that glycogen synthase kinase (GSK)-3 may underlie the rapid antidepressant action of ketamine, although the precise mechanisms are unclear. In this study, we examined the effects of ketamine and GSK-3 inhibitor SB216763 in the unpredictable, chronic mild stress (CMS) mouse model of mice.<h4>Methodology/principal findings</h4>Adult C57/B6 male mice were divided into 2 groups, a non-stressed control group and the unpredictable CMS (35 days) group. Then, either vehicle, ketamine (10 mg/kg), or the established GSK-3 inhibitor, SB216763 (10 mg/kg), were administered into mice in the CMS group, while vehicle was administered to controls. In the open field test, there was no difference between the four groups (control+vehicle, CMS+vehicle, CMS+ketamine, CMS+SB216763). In the sucrose intake test, a 1% sucrose intake drop, seen in CMS mice, was significantly attenuated after a single dose of ketamine, but not SB216763. In the tail suspension test (TST) and forced swimming test (FST), the increased immobility time seen in CMS mice was significantly attenuated by a single dose of ketamine, but not SB216763. Interestingly, the ketamine-induced increase in the sucrose intake test persisted for 8 days after a single dose of ketamine. Furthermore, a single administration of ketamine, but not SB216763, significantly attenuated the immobility time of the TST and FST in the control (non-stressed) mice.<h4>Conclusions/significance</h4>These findings suggest that a single administration of ketamine, but not GSK-3 inhibitor SB216763, produces a long-lasting antidepressant action in CMS model mice.
|