Vibrations of Plates with Complex Shape: Experimental Modal Analysis, Finite Element Method, and R-Functions Method
In this paper, the dynamic behavior of 3D-printed plates with different shapes and boundary conditions is investigated. The natural frequencies and mode shapes were determined using three different methods: the experimental analysis, the finite element method, using Nastran, and the R-functions meth...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2020/8882867 |
Summary: | In this paper, the dynamic behavior of 3D-printed plates with different shapes and boundary conditions is investigated. The natural frequencies and mode shapes were determined using three different methods: the experimental analysis, the finite element method, using Nastran, and the R-functions method. The experimental and theoretical results are compared. The specimens tested included four cases. The test procedure is deeply described, and the material properties of the plates are given. The fixed-fixed configuration shows a better agreement both in the rectangular plate and in the plate with rectangular cuts, and the R-functions method gives better convergence with respect to the experimental and finite element analysis. The simply supported arrangement indicates some uncertainty in the boundary realization of the specimen. |
---|---|
ISSN: | 1070-9622 1875-9203 |