A Fixed Point Approach to the Stability of the Functional Equation <inline-formula> <graphic file="1687-1812-2009-912046-i1.gif"/></inline-formula>
<p/> <p>By applying the fixed point method, we will prove the Hyers-Ulam-Rassias stability of the functional equation <inline-formula> <graphic file="1687-1812-2009-912046-i2.gif"/></inline-formula> under some additional assumptions on the function <inline-...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2009/912046 |
Summary: | <p/> <p>By applying the fixed point method, we will prove the Hyers-Ulam-Rassias stability of the functional equation <inline-formula> <graphic file="1687-1812-2009-912046-i2.gif"/></inline-formula> under some additional assumptions on the function <inline-formula> <graphic file="1687-1812-2009-912046-i3.gif"/></inline-formula> and spaces involved.</p> |
---|---|
ISSN: | 1687-1820 1687-1812 |